Let G be a group. A weak Cayley table isomorphism $\phi$: G $\rightarrow$ G is a bijection satisfying two conditions: (i) $phi$ sends conjugacy classes to conjugacy classes; and (ii) $\phi$(g1)$\phi$(g2) is conjugate to $\phi$(g1g2) for all g1, g2 in G. The set of all such mappings forms a group W(G) under composition. We study W(G) for fifty-six of the two hundred nineteen three-dimensional crystallographic groups G as well as some other groups. These fifty-six groups are related to our previous work on wallpaper groups.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10348 |
Date | 03 December 2021 |
Creators | Paulsen, Rebeca Ann |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0019 seconds