Return to search

Weak Cayley Table Groups of Crystallographic Groups

Let G be a group. A weak Cayley table isomorphism $\phi$: G $\rightarrow$ G is a bijection satisfying two conditions: (i) $phi$ sends conjugacy classes to conjugacy classes; and (ii) $\phi$(g1)$\phi$(g2) is conjugate to $\phi$(g1g2) for all g1, g2 in G. The set of all such mappings forms a group W(G) under composition. We study W(G) for fifty-six of the two hundred nineteen three-dimensional crystallographic groups G as well as some other groups. These fifty-six groups are related to our previous work on wallpaper groups.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10348
Date03 December 2021
CreatorsPaulsen, Rebeca Ann
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0021 seconds