As an abundant sedimentary rock, shale is widely used as construction material around the world. However, shale is a fissile and laminated material and is therefore subject to deterioration due to environmental and chemical forces (i.e., weathering), which is possible to cause high maintenance cost on associated structures and failures of earth slopes and embankments. However, currently, there is lack of efficient method to monitor the weathering process of shale. This thesis uses several shale samples collected from the commonwealth of Kentucky to study the deformation and shear behaviors of weathered compacted shale. A new electrical approach was developed to access the deformation behavior of shale. The long term deformation behaviors, such as collapse and swell can be predicted from specific electrical parameters. The critical state theory was used to describe the shear behavior of weathered compacted shale. Some findings observed by previous researchers were confirmed, and new empirical equations were provided to estimate the shear strength parameters of weathered compacted shale.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ce_etds-1025 |
Date | 01 January 2014 |
Creators | Zhang, Xu |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Civil Engineering |
Page generated in 0.002 seconds