Return to search

Weathering of sulfide ores in model soils, potentially toxic element release and bioavailability

The exploitation of metallic sulfide ores produces vast quantities of fine-grained wastes hosting potentially toxic elements (PTEs). There are concerns that, if improperly disposed of and managed, waste mineral particles can behave as vectors that disperse PTEs via aeolian and fluvial transport, subsequently contaminating soils and crops used to support human populations. The importance of these particles, as sources and influencers of PTE biogeochemistry in productive soils, has received limited research. Long-term (365 d) batch incubation experiments, field weathering experiments and phytoavailability trials, were performed to establish the rate, patterns and factors limiting PTE (Cd, As, Hg) release from grains of sphalerite (Zn(Fe,Cd)S), arsenopyrite (FeAsS) and cinnabar (HgS) into soil matrices (0.1 % mineral:soil m/m), and the bioavailability of the liberated PTEs to important food crops (Tricitum aestivum, wheat and Oryza sativa, rice). All three of the ores underwent chemical weathering in oxic agricultural soils of both temperate and sub-tropical provenance, during which nonessential PTEs (cadmium, mercury, arsenic) were released in bioavailable forms, at rates relevant to agricultural production. Sphalerite weathered at a rate of 0.6 to 1.2 % a-1 (Cd basis) in the experimental soils, releasing 0.5 to 1 μmol Cd g-1 ZnS a-1 into the soil matrix. Cinnabar weathering reached a maximum of 12.0 – 13.5 % (Hg basis) after 90 days exposure in oxic soils, whereas arsenopyrite weathering was rapid and extensive, reaching 56 to 66 % (S basis) after 180 days. The PTE concentrations accumulated in edible grains of wheat and rice grown in the sulfide-contaminated soils were higher than international food safety limits by factors of 8 (Cd in rice), 10 – 30 (Hg in wheat and rice) and 8 – 12 (As in wheat and rice). The primary geochemical factors controlling PTE release and bioavailability were solid-phase associations (i.e. PTEs complexed by clays, metal oxyhydroxides and organic matter) and the precipitation of secondary mineral phases. Weathering arsenopyrite grains were passivated from further oxidation by secondary iron-arsenate phases, which also co-precipitated arsenic liberated from the ore. Secondary phase formation was identified as the cause of decreasing extractable Hg (liberated from cinnabar) after mercury release from cinnabar peaked (≤ 90 days exposure). For sphalerite, the evidence indicates that secondary sulfide phases formed under flooded (sulfate-reducing) soil conditions (paddy rice), limited the bioavailability of cadmium previously liberated under oxic conditions. These key findings demonstrate a potential human health hazard relating to the dispersal of PTE-hosting sulfide ore particles produced by mining activities into soils supporting human populations via crop contamination. This work also highlights differences in ore geochemistry, showing the need for additional research on different ore minerals and their alteration products.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:588569
Date January 2013
CreatorsRobson, Thomas
ContributorsBraungardt, Charlotte
PublisherUniversity of Plymouth
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10026.1/2859

Page generated in 0.0017 seconds