Return to search

Direct Strength Method for Web Crippling of Cold-formed Steel C-sections

Web crippling is a form of localized buckling that occurs at points of transverse concentrated loading or supports of thin-walled structural members. The theoretical computation of web crippling strength is quite complex as it involves a large number of factors such as initial imperfections, local yielding at load application and instability of web. The existing design provision in North American specification for cold-formed steel C-sections (AISI S100, 2007) to calculate the web-crippling strength is based on the experimental investigation. The objective of this research is to extend the direct strength method to the web crippling strength of cold-formed steel C-sections. ABAQUS is used as a main tool to apply finite element analysis and is used to do the elastic buckling analysis. The work was carried out on C-sections under interior two flange (ITF) loading, end two flange (ETF) loading cases. Total of 128 (58 ITF, 70 ETF) sections were analyzed. Sections with various heights (3.5 in.to 6 in.) and various lengths (21 in. to 36 in.) were considered. Data is collected from the tests conducted in laboratory and the data from the previous researches is used, to extend the direct strength method to cold formed steel sections. Proposing a new design for both the loading cases and calculation of the resistance factors under (AISI S100, 2007) standards is done.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc271893
Date05 1900
CreatorsSeelam, Praveen Kumar Reddy
ContributorsYu, Cheng, Zhang, Haifeng, Foster, Phillip R., Nasrazadani, Seifollah
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Seelam, Praveen Kumar Reddy, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0016 seconds