As researchers increasingly use web-based surveys, the ease of dropping out in the online setting is a growing issue in ensuring data quality. One theory is that dropout or attrition occurs in phases that can be generalized to phases of high dropout and phases of stable use. In order to detect these phases, several methods are explored. First, existing methods and user-specified thresholds are applied to survey data where significant changes in the dropout rate between two questions is interpreted as the start or end of a high dropout phase. Next, survey dropout is considered as a time-to-event outcome and tests within change-point hazard models are introduced. Performance of these change-point hazard models is compared. Finally, all methods are applied to survey data on patient cancer screening preferences, testing the null hypothesis of no phases of attrition (no change-points) against the alternative hypothesis that distinct attrition phases exist (at least one change-point).
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-6813 |
Date | 01 January 2019 |
Creators | Hochheimer, Camille J |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0019 seconds