Return to search

Establishing Weed Prevention Areas and evaluating Their Impact

The spread of invasive weeds continues to be a serious economic and environmental threat. Weed prevention has the potential to stop weeds before they become well established in an area conserving time, energy, and resources. Unfortunately, weed prevention is often overlooked. Weed Prevention Areas (WPAs) are a relatively new tool developed to help improve the application of weed prevention. They are cooperatively managed areas that focus on implementing prevention and early detection strategies at a community level. The purpose of this research was to establish baseline data that will be used to evaluate the overall effectiveness of the WPA concept, as well as to produce materials to assist individuals with the development of a WPA. Two rural communities, with new WPAs, were each paired with a non-WPA community for data collection purposes. On-the-ground GPS vegetation inventories were conducted to determine the initial abundance and distribution of selected invasive weed species. This information was then used to demonstrate how to prioritize species and sites within a WPA in order to utilize limited resources more efficiently. A mail-back survey was also conducted to evaluate landowners' current opinions and activities in regards to prevention and control. In general, weed prevention was viewed as an important part of integrated weed management, but fewer than half of all respondents applied prevention strategies on their property. The failure to implement prevention strategies was attributed to limited funding and resources, a lack of weed prevention knowledge, and a high level of perceived risk. The knowledge gained from this research was then used to create Step-By-Step Guidelines for Establishing a Weed Prevention Area. These Guidelines provide interested individuals the resources necessary to successfully organize a WPA in their community. In addition, four wildland weed mapping methods were evaluated to identify their strengths and weaknesses. There was no difference in the estimation of patch size or location between the buffered point, screen-drawn, and perimeter walked methods. In most situations, time and distance factors favor the selection of either the buffered point or screen-drawn method. If patch shape is an important consideration, the perimeter-walked or buffered point method should be selected.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1847
Date01 May 2011
CreatorsChristensen, Stephanie
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0026 seconds