Return to search

From the Appalachians to the Alps: Constraints on the Timing, Duration, and Conditions of Metamorphism at Convergent Margins

The timing, duration, and pressure-temperature (P-T) conditions of metamorphism provide a direct record of the physical and chemical evolution of the crust and inform our knowledge and understanding of plate tectonics. The characteristic timescales and length-scales of metamorphism vary by orders of magnitude, depending on the driving tectonic process. Two fundamental problems with the retrieval of this information from the metamorphic rock record are insufficient temporal resolution and processes that overprint or obscure the full record of metamorphism. Understanding what processes are recorded, and why they are recorded, is critical for accurate models of tectonics. This dissertation examines these processes in the metamorphic rock record in two settings: the central Appalachian orogen and the Western Alps fossil subduction zone.

Chapters 2 and 3 focus on poly-metamorphic migmatites from the Smith River Allochthon (SRA) in the central Appalachians. A combination of petrography, thermodynamic modeling, and geochemistry is used to document and quantify the metamorphic evolution of the SRA and determine the petrologic processes that control metamorphic re-equilibration in high-temperature metamorphic systems. Chapter 2 presents new constraints for Silurian high-temperature (~750℃, 0.5 GPa) contact metamorphism in response to mafic magmatism and a cryptic Alleghanian metamorphism (~600℃, 0.8 GPa). A combination of extensive and highly variable melt loss followed by H2O-flux melting during contact metamorphism is shown to produce a range of modified bulk rock compositions and domains with variable fertilities for metamorphic re-equilibration during the Alleghanian. In chapter 3, monazite, allanite, and zircon laser ablation split-stream petrochronology are used to constrain the timing of poly-metamorphism and develop a tectonic model for the SRA. The SRA preserves evidence for at least three orogenic events, each with a relatively short duration (< 10 Myr.), likely due to repeated magmatic heating. The full record of this punctuated heating is obscured by dissolution-reprecipitation reactions that variably recrystallize monazite and decouple trace element chemistry from isotopic age and significantly restrict equilibrium length-scales.

Chapters 4 and 5 examine the dynamic interplay between transient fluid flow, episodic metamorphism, and deformation in subduction zones. In chapter 4, diffusional speedometry is applied to eclogite breccias from the Monviso ophiolite to quantify the periodicity of transient deformation and metamorphism at eclogite facies P-T conditions. The maximum timescale for repeated fracturing is constrained to ~1 Myr., likely caused by cyclic variations in fluid pressure and strain rate (not necessarily seismicity). While difficult to preserve and detect in the rock record, this periodic metamorphism may play an important role in detachment and exhumation processes in subduction zones worldwide. Finally, in chapter 4 a combination of thermodynamic modeling and Sm-Nd garnet geochronology are used to construct a model for subduction and exhumation of the Voltri ophiolite. Garnet growth occurs rapidly and close to peak P-T conditions (~520℃, 2.4 GPa) across the ophiolite, with large (>10 km2) areas preserving near-identical ages, suggesting that the Voltri ophiolite was exhumed as several large coherent units, aided by the presence of buoyant serpentinites. / Doctor of Philosophy / Metamorphism provides a direct record of the physical and chemical evolution of Earth's crust and informs our knowledge and understanding of how plate tectonics works on Earth. Differences in the physical conditions (e.g. pressure, temperature) and timescales of metamorphism can provide clues for the operation of unique tectonic processes, such as the intrusion and cooling of magma deep underground or the collision of two tectonic plates and formation of a mountain range. The key is to correctly "read" the metamorphic rock record. One inherent difficulty in reading and interpreting metamorphic rocks is that few current methods are able to resolve very short timescale events (much less that 1 million years (Myr.) in duration), such as earthquakes, in the rock record. Moreover, metamorphic rocks experience numerous distinct 'events', which partly overprint one another and produce a complicated and near impossible puzzle for geologists to unravel. Solving this puzzle is critical to fully understand how plate tectonics works on Earth. This dissertation addresses these problems and examines metamorphism in two locations: the core of the ancient supercontinent Pangea (central Appalachians) and a fossil subduction zone (the Western Alps).

Chapters 2 and 3 focus on the central Appalachians. Chemical and textural analysis of metamorphic rocks are used to understand the major heat sources that operated in the crust during the formation of the Appalachians and determine the processes that control metamorphic re-crystallization at extremely high temperatures. Chapter 2 presents new constraints for high-temperature (~750℃) metamorphism in response to magmatic heating and provides evidence for a younger metamorphic event that is cryptically recorded. A combination of compositional changes caused by earlier high-temperature metamorphism and the later addition of water along reactive grain boundaries are shown to be important factors in the cryptic record of the younger metamorphic event. In chapter 3, U-Pb geochronology is used to the determine the timing of metamorphism and construct a tectonic model for the central Appalachians, which preserves evidence for at least three tectonic events over ~200 Myr, but with each occurring over a relatively short duration (< 10 Myr.). These events are interpreted to represent repeated magmatic heating 'pulses' during the formation of Pangea. However, the full record of this punctuated heating is partly obscured by subsequent fluid alteration.

Chapters 4 and 5 examine the dynamic interplay between transient fluid flow, earthquakes, and metamorphism deep in subduction zones. In chapter 4, fracture sets within metamorphic garnet crystals from the French Alps (Monviso) are used to determine the timescale of repeated fracturing and recrystallization during subduction. The fracture timescales are estimated to be much less than 1 Myr. and are interpreted to record repeated fluid "pulses" and possibly deep earthquakes. While difficult to preserve and detect in the rock record, this process may play an important role in bringing metamorphic rocks back from deep in subduction zones to Earth's surface. In chapter 4, a combination of mineral chemistry and geochronology are used to construct a tectonic model for the subduction and exhumation of a portion of the Italian Alps (Voltri). Metamorphic reactions occur synchronously and immediately before exhumation across a wide area (> 10 km2). This suggest that large (> 10 km2) pieces of oceanic crust can metamorphose, detach, and exhume deep in subduction zones.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106950
Date19 June 2020
CreatorsBroadwell, Kirkland S.
ContributorsGeosciences, Caddick, Mark J., Pollyea, Ryan, Beard, James S., Dragovic, Besim, Bodnar, Robert J.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0032 seconds