Electroplated zinc finishes have been widely used in the packaging of electronic products for many years as a result of their excellent corrosion resistance and relatively low cost. However, the spontaneous formation of whiskers on zinc electroplated components, which are capable of resulting in electrical shorting or other damaging effects, can be highly problematic for the reliability of long life electrical and electronic equipment. To date, most research has focused on tin whiskers and much less attention has been paid to zinc whisker research. A number of mechanisms to explain zinc whisker growth have been proposed, but none of them are widely accepted and some are in conflict with each other. This study has investigated the mechanism for whisker growth from three commercial zinc electroplated coatings on mild steel substrates. Firstly, whisker growth from an alkaline cyanide-free zinc electrodeposit was studied. A reduction in deposition current density (from 50 to 5 mA/cm2) and an increase in deposit thickness (from 2 to 15 μm) both contributed to reduced whisker growth. In terms of the mechanisms of whisker growth, it was observed that the presence of spherical raised surface features (nodules) with cavities beneath, promoted whisker growth by markedly shortening the incubation time from ~ 5 months to ~ 4 weeks. More importantly, the time dependent recrystallisation of the as-deposited columnar structure is closely associated with whisker growth from both nodules and planar regions of the deposit. The formation of Fe-Zn intermetallic compounds (IMCs) was not observed at either the Fe/Zn interface or within the electroplated coatings and does not appear to be associated with Zn whisker growth. Whisker growth from an acid chloride zinc electroplated coating and a Zn-Ni alloy electroplated coating were also investigated. These two coatings were immune to whisker growth after 18 months of storage at room temperature, regardless of deposition current density, deposit thickness and substrate surface modification. Finally, the effect of potential mitigation strategies on whisker growth was evaluated. Exposure to elevated temperatures (50 to 150°C) for 24 hours promoted whisker growth by reducing the incubation time for whiskers to first appear from less than 4 weeks to less than 10 days, whilst whisker growth was significantly retarded when samples were subjected to a short period of thermal treatment (50 to 150°C) for 0.5 hour. More importantly, for a short period of thermal treatment, whisker mitigation became increasingly effective as the treatment temperature was raised. In addition, the formation of a trivalent chromium passive coating on the alkaline cyanide-free zinc electrodeposits immediately after deposition was not an effective mitigation method to retard whisker growth.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:719185 |
Date | January 2016 |
Creators | Wu, L. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/24612 |
Page generated in 0.002 seconds