We have extended our detailed survey of the local white dwarf population from 20 to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process, newstars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68 per cent complete (the corresponding 20 pc sample is now 86 per cent complete). The space density of white dwarfs is unchanged at 4.8 +/- 0.5 x 10(-3) pc(-3). This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74 per cent versus 26 per cent). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition, this updated sample exhibits a pronounced deficiency of nearby 'Sirius-like' systems. 11 such systems were found within the 20 pc volume versus only one additional system found in the volume between 20 and 25 pc. An estimate of white dwarf birth rates during the last similar to 8 Gyr is derived from individual remnant cooling ages. A discussion of likely ways new members of the local sample may be found is provided.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/621732 |
Date | 01 November 2016 |
Creators | Holberg, J. B., Oswalt, T. D., Sion, E. M., McCook, G. P. |
Contributors | Univ Arizona, Lunar & Planetary Lab |
Publisher | OXFORD UNIV PRESS |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society |
Relation | http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stw1357 |
Page generated in 0.002 seconds