Adolescence is a period of time when the brain undergoes profound development. Myelination is a maturational process in which oligodendroglia project out lipid-rich ramifications which wrap and insulate axons. This is crucial for effective neurotransmission between brain regions and, if compromised by pharmacological insults such as alcohol, can have long-term implications on behavior and cognition. We have previously shown that adolescent alcohol impacts males and females differentially, however it remains unknown how alcohol impacts oligodendroglia during development. The goal of this study was to determine the cellular dynamics of the oligodendroglia in male and female mice through development with and without alcohol exposure. Our results suggest that sexually dimorphic temporal dynamics exist within oligodendroglia. Specifically, this population of cells is notably dynamic during adolescence in males while stable in females. In addition, preliminary studies show that alcohol may cause a restriction on differentiation of oligodendroglia in male but not female mice. Further understanding of sex differences in the mechanisms of alcohol-induced change to oligodendroglia development could create the foundation for targeted, specific therapeutic agents and allow for individualized treatment of patients suffering from alcohol use disorders and potentially other addictions.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1894 |
Date | 29 October 2019 |
Creators | Scott, Samuel |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0018 seconds