Return to search

Two View Line-Based Matching, Motion Estimation and Reconstruction for Central Imaging Systems

The primary goal of this thesis is to develop generic motion and structure algorithms for images taken from constructed scenes by various types of central imaging systems including perspective, fish-eye and catadioptric systems. As-suming that the mapping between the image pixels and their 3D rays in space is known, instead of image planes, we work on image spheres (projection of the images on a unit sphere) which enable us to present points over the entire viewsphere suitable for presenting omnidirectional images. In the first part of this thesis, we develop a generic and simple line matching approach for images taken from constructed scenes under a short baseline motion as well as a fast and original geometric constraint for matching lines in planar constructed scenes insensible to the motion of the camera for all types of centralimages including omnidirectional images.Next, we introduce a unique and efficient way of computing overlap between two segments on perspective images which considerably decreases the over all computational time of a segment-based motion estimation and reconstruction algorithm. Finally in last part of this thesis, we develop a simple motion estima-tion and surface reconstruction algorithm for piecewise planar scenes applicable to all kinds of central images which uses only two images and is based on mini-mum line correspondences.To demonstrate the performance of these algorithms we experiment withvarious real images taken by a simple perspective camera, a fish-eye lens, and two different kinds of paracatadioptric sensors, the first one is a folded catadioptric camera and the second one is a classic paracatadioptric system composed of a parabolic mirror in front of a telecentric lens.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00799337
Date17 October 2011
CreatorsMosaddegh, Saleh
PublisherUniversité de Bourgogne
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0272 seconds