Anyone who has spent time in coastal New England has seen gulls flying overhead and heard their familiar sound; gulls may be one of the most recognizable birds in the world. There are over 50 species of gulls worldwide, and many of them are closely associated with human development or activities. In Massachusetts, there are several common gull species including herring (Larus argentatus), great black-back (Larus marinus), laughing (Leucophaeus atricilla), and ring-billed (Larus delawarensis). While coastal encounters with gulls are ubiquitous, gulls can also be found inland, and ring-billed and herring gulls are now a common sight at lakes, parks, and commercial parking lots dozens or hundreds of kilometers from the ocean. This inland population of gulls presents unique challenges and exciting research opportunities. Because they are often closely associated with human activity, concentrations of inland gulls can lead to potential water quality concerns (when large roosts form on public water supply reservoirs), airplane hazards (when groups of gulls concentrate near airports or flight paths), or disease transmission (when gulls forage at landfills or waste water treatment plants then visit areas with people). In the following chapters I explore various aspects of inland gull ecology during the non-breeding season. In chapter 1, I review the concept of philopatry in birds and discuss ways to assess site faithful behavior. In Chapters 2 and 3, I explore some of the ecological aspects of inland gulls. Chapter 2 examines the site fidelity of gulls to their wintering areas and my results suggest that gulls exhibit high winter-site fidelity but variable site persistence during the winter season. Chapter 3 explores roost site selection throughout the year and models roost selection in Massachusetts. My results indicate that ring-billed gulls prefer freshwater roosts, while herring gulls use saltwater roosts more often. In Massachusetts, both herring and ring-billed gulls select inland freshwater roosts based on the size of the water body and proximity to their last daytime location. In Chapter 4, I detail the results of an experimental study trying to reduce the amount of anthropogenic food available to gulls at inland parking lots. Ring-billed gulls were the most common gull found in parking lots, and my educational approach to reduce feedings had mixed results; education seemed to reduce the number of feedings in some cases, but the number of gulls in each parking lot was not affected. In Chapters 5 and 6, I detail some applied management techniques. Chapter 5 discusses efforts to exclude gulls from a waste water treatment plant in central Massachusetts. Overhead stainless-steel wires were completely effective at preventing gulls from using structures at the treatment plant. Chapter 6 describes an innovative technique that was used to efficiently and effectively catch gulls during winter in highly urbanized environments. I captured over 1000 gulls using a net launcher in various parking lots and other urban areas.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:dissertations-7179 |
Date | 01 January 2014 |
Creators | Clark, Daniel E |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Language | English |
Detected Language | English |
Type | text |
Source | Doctoral Dissertations Available from Proquest |
Page generated in 0.0016 seconds