Aeolian sediment transport threshold is commonly defined as the minimum wind speed (or shear stress) necessary for wind-driven sediment transport. Threshold is a core parameter in most models of aeolian transport. Recent advances in methodology for field-based measurement of threshold show promise for improving parameterizations; however, investigators have varied in choice of method and sensor. The impacts of modifying measurement system configuration are unknown. To address this, two field tests were performed: (i) comparison of four piezoelectric sediment transport sensors, and (ii) comparison of four calculation methods. Data from both comparisons suggest that threshold measurements are non-negligibly modified by measurement system configuration and are incomparable. A poor understanding of natural sediment transport dynamics suggests that development of calibration methods could be difficult. Development of technical standards was explored to improve commensurability of measurements. Standards could assist future researchers with data syntheses and integration. / xi, 108 leaves : ill. ; 29 cm
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:ALU.w.uleth.ca/dspace#10133/2616 |
Date | January 2010 |
Creators | Barchyn, Thomas Edward, University of Lethbridge. Faculty of Arts and Science |
Contributors | Hugenholtz, Christopher |
Publisher | Lethbridge, Alta. : University of Lethbridge, Dept. of Geography, 2010, Arts and Science, Department of Geography |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_US |
Detected Language | English |
Type | Thesis |
Relation | Thesis (University of Lethbridge. Faculty of Arts and Science) |
Page generated in 0.0019 seconds