During the last decades the exploitation of energy from the wind has become one of the most promising renewable energy technologies. The main strive in today’s development of wind turbines is to increase the efficiency of the turbine and to build bigger rotors that are able to extract more power out of the wind. When it comes to the planning and designing of a wind park, also the aerodynamic interactions between the single turbines must be taken into account. The flow in the wake of the first row turbines is characterized by a significant deficit in wind velocity and by increased levels of turbulence. Consequently, the downstream turbines in a wind farm cannot extract as much power from the wind anymore. Furthermore, the additional turbulence in the wake could be a reason for increased material fatigue through flow-induced vibrations at the downstream rotor. The main focus of this experimental study is to investigate the local velocity deficit and the turbulence intensities in the wake behind an array of two model wind turbines. For two different turbine separation distances, the wake is scanned at three different downstream positions. The experiments are performed at the wind tunnel (1.9m x 2.7m cross section) at NTNU Trondheim using two model wind turbines with a rotor diameter of 0.9m. A hot wire probe is used to scan the wake behind the model turbines in defined positions. Moving axially downstream the velocity deficit in the wake gradually recovers and the turbulence intensity levels slowly decrease. Furthermore, a gentle expansion of the wake can be observed. The wake profiles measured in close distances behind the rotor are characterized by evident asymmetries. Further downstream in the wake turbulent diffusion mechanisms cause a more uniform and more symmetrical flow field. Moreover, the turbulence intensity behind the second wind turbine is found to be significantly higher than behind one unobstructed turbine. Also, considerably higher velocity deficits are found in the near wake behind the second turbine compared to the wake behind one unobstructed turbine. However, the velocity profile at five rotor diameters downstream in the wake behind the second turbine is already very similar to the velocity distribution behind the first turbine. Furthermore, the velocity field and turbulence intensity distribution in the wake behind the second turbine is more symmetrical and more uniform than behind the first turbine.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-61737 |
Date | January 2011 |
Creators | Bartl, Jan |
Publisher | KTH, Kraft- och värmeteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds