Return to search

AnÃlise de campos de ventos oceÃnicos em imagens SAR / ANALYSIS OF OCEAN WINDS FIELDS IN IMAGES SAR

FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Esta tese introduz uma nova metodologia para determinar a direÃÃo do vento sobre a superfÃcie dos oceanos utilizando tÃcnicas de processamento das imagens de Radar de Abertura SintÃtica (SAR, do inglÃs Synthetic Aperture Radar). A literatura relacionada demonstra um crescente interesse no processamento dessas imagens para detecÃÃo de alvos, classificaÃÃo de regiÃes, extraÃÃo de campos de ventos, monitoramento de derrames de Ãleo, aplicaÃÃes geofÃsicas e meteorolÃgicas. A extraÃÃo de campos de ventos em imagens SAR à uma tarefa desafiadora devido à contaminaÃÃo das mesmas por um ruÃdo oriundo do sistema de aquisiÃÃo, denominado speckle, que dificulta tarefas de processamento e interpretaÃÃo das mesmas. Portanto, esta tese propÃe metodologias de extraÃÃo da direÃÃo do vento por transformada de Fourier, transformadas wavelets e mÃtodos baseados em textura. As transformadas wavelets utilizadas para esta tarefa sÃo Gabor, ChapÃu Mexicano e o algoritmo à trous. Com relaÃÃo à anÃlise de textura utilizada, esta se baseia na informaÃÃo espacial da matriz de co-ocorrÃncia dos nÃveis de cinza para estimar a direÃÃo de padrÃes lineares em imagens contaminadas com speckle.
Os experimentos foram realizados em imagens de textura sintÃticas, imagens do Ãlbum de Brodatz e imagens SAR sintÃticas e reais. Foi observado que os mÃtodos propostos foram capazes de estimar direÃÃes de padrÃes lineares e extrair campos de streaks de vento visÃveis em imagens SAR reais. As principais contribuiÃÃes desta tese sÃo: o mÃtodo proposto para estimaÃÃo de direÃÃo de ventos
na superfÃcie do oceano e a extensÃo de tÃcnica jà existente na literatura, possibilitando assim a estimaÃÃo da velocidade dos ventos na faixa de 4 a 10 m/s. Os melhores resultados obtidos nesta tese foram alcanÃados utilizando o mÃtodo proposto que combina transformada wavelet e anÃlise de textura. / This thesis introduces a new methodology to determine the wind direction over the ocean surface using image processing techniques on SAR (Synthetic Aperture Radar) images. Related literature demonstrates a growing interest in processing these images for target detection, region classification, wind field extraction, oil spill monitoring, geophysical and meteorological applications. Wind field extraction in SAR
images is a challenging task due to contamination acquisition system by speckle noise, which makes difficult
processing and interpretation tasks. Thus, this thesis proposes methods for wind direction estimation by applying image transforms, such as Fourier and wavelets and furthermore texture-based methods. The wavelet transforms used for this task are Gabor, Mexican Hat and the à trous algorithm. Concerning the texture approach, it is based on the co-occurrence matrix to estimate direction of linear patterns in speckled images. The experiments were performed on synthetic texture, Brodatz album, synthetic and real SAR images. It was observed that the proposed methods were able to estimate directions of linear patterns and extract wind fields from visible wind-induced streaks on SAR images. The main contributions of this thesis are: to propose methods for wind direction estimation on the ocean surface and to extend existing techniques in the literature in order to provide wind vector estimation in the range of 4 to 10 m/s. The best results of this tese were achieved with the proposed method that combines wavelet transform and texture analysis.

Identiferoai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:5358
Date26 September 2011
CreatorsGladeston da Costa Leite
ContributorsFÃtima Nelsizeuma Sombra de Medeiros
PublisherUniversidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica, UFC, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds