The direct sequence (DS) code division multiple access (CDMA) is one of the most promising multiplexing technologies for wireless communications. It is also a core technology used in the wideband CDMA (WCDMA) system for the third generation (3G) wireless communication systems. In practice, in the CDMA systems the incomplete orthogonal of the spreading codes between users may introduce the so-called multiple access interference (MAI). Usually, the near-far problem exists when the interfering users are assigned powers much higher than the desired user. Such that the system performance might degrade, dramatically, and thus limits the system capacity. To circumvent the above-mentioned problems many effective adaptive multiuser detectors, based on the minimum mean square error (MMSE) and the minimum output energy (MOE) criteria subject to certain constraints have been proposed. In addition, to mitigate multipath fading effect, RAKE receiver was adopted due to the advantages of path diversity, thus, enhances the system performance. To implement the blind adaptive multiuser detector the linearly constrained minimum variance (LCMV), which is the constrained version of MOE, has been suggested. Further, the LCMV-based receivers exhibit high sensitivity to the channel mismatch caused by the unreliable estimation. To deal with this problem the constant modulus (CM) criterion was considered. In this dissertation, to deal with diverse phenomena encountered in practical channels, we first propose new blind adaptive multi-user detectors, based on the Min/Max criterion associated with the LCCM approach. For implementation the LC exponential window (EW) recursive least-square (RLS) algorithm is derived, and is referred to as the EW LCCM-RLS receiver. It can be used to effectively suppress the MAI and ISI, simultaneously, over multipath fading channels and are robust to mismatch problem caused by inaccuracies in the acquisition of timing and spreading code of the desired user. To reduce the complexity of the above-mentioned blind adaptive multi-user receiver with the LCCM-RLS algorithm, the so-called generalized sidelobe-canceller (GSC) structure is adopted, results in obtaining new CM-GSC-RLS algorithm. Moreover, to further improve the system performance for multipath fading and time-varying channel, the sliding window (SW) LCCM-RLS and SW CM-GSC-RLS algorithms are developed. It can be employed for multipath fading channel with the rapidly changing strong narrowband interference (NBI), which is joined suddenly to the CDMA systems. To look more inside the effect of selecting the initial value of the input signals autocorrelation matrix, some theoretical analyses for the SW LC-RLS as well as EW LC-RLS are provided. Since, unfortunately, the LCCM criterion is known to highly depend on the exact knowledge of the desired user amplitude that is not known exactly at receiver. In the final of this dissertation, a novel linearly constrained adaptive constant modulus RLS (LC-ACM-RLS) algorithm for blind DS-CDMA receiver is proposed. With this new proposed LC-ACM-RLS algorithm, the amplitude variation of the desired user, due to changing characteristics of the channel, can be tracked adaptively. Thus, better performance achievement, in terms of output signal-to-interference-plus-noise ratio (SINR) and bit error rate (BER), over the conventional LCCM-LMS and LCCM-RLS algorithms can be expected.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0425107-164815 |
Date | 25 April 2007 |
Creators | Sun, Chun-hung |
Contributors | Jenq-Tay Yuan, Miin-Jong Hao, Hsin-Hsyong Yang, Gin-Kou Ma, Shyh-Neng Lin, Chin-Der Wann, Ta-Sung Lee, Shiunn-Jang Chern |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0425107-164815 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.002 seconds