Return to search

Characterizing the next generation wireless networks: capacity gain, backlog and delay. / 刻畫下一代無線網絡: 容量增益, 隊列長度和延遲 / CUHK electronic theses & dissertations collection / Ke hua xia yi dai wu xian wang luo: rong liang zeng yi, dui lie chang du he yan chi

First, we give the first formal study on stream control scheduling in wireless mesh networks with Multi-Input-Multi-Output (MIMO) antennas and study how much it can improve network capacity. We derive the upper bound of the optimal network capacity gain of stream control. We also propose an efficient stream control scheduling algorithm, GreedySC. Simulations show the network capacity of GreedySC is much larger than that of a previously proposed stream control scheduling algorithm, SCMA. / Second, we consider leveraging transmission power to improve the network capacity of wireless mesh networks. It is well-known that power control can improve network capacity significantly. However, recent works show conflicting results: network capacity may increase or decrease with higher transmission power under different scenarios. In this work, we give the first systematic study on this paradox. We prove that the the optimal network capacity is a non-decreasing function of higher transmission power. We also derive the upper bound of the optimal network capacity gain of power control. Finally, we give the reasons why network capacity may increase or decrease with higher transmission power in practice. Simulations verify our arguments. / The next generation wireless networks target at providing better quality of service for ubiquitous network access than nowaday wireless networks. Various technologies from the physical layer to the transport layer are proposed to realize this goal. A fundamental question is how to characterize the impact of a new technology on the performance of wireless networks, e.g., network capacity, backlog and delay. We propose to apply optimization theory for the network capacity characterization and apply stochastic network calculus for the backlog and delay characterization. However, the detailed characterization procedure depends on different problems. In this thesis, we first formally define network capacity, the (optimal) network capacity gain of a new technology, backlog and delay. Then we carry out systematic characterizations on the following three important issues in designing the next generation wireless networks. / Third, we take the first step to apply stochastic network calculus for the backlog and delay analysis of 802.11 wireless local networks. We prove the general stability condition of deriving stable backlog and delay for a wireless node. From this, we derive the specific stability condition of an 802.11 wireless node. Then we derive the stochastic service curve of an 802.11 node. Based on the service curve, we derive the backlog and delay bounds of the node. Simulations verify our analysis. / Wang, Yue. / Adviser: John C. S. Lui. / Source: Dissertation Abstracts International, Volume: 70-09, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 109-117). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344418
Date January 2009
ContributorsWang, Yue, Chinese University of Hong Kong Graduate School. Division of Computer Science and Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (xiv, 123 leaves : ill.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.002 seconds