Wireless sensor networks have been used in different applications due to the advancement of sensor technology. These uses also have raised different optimization issues. Most of the algorithms proposed as solutions to the various optimization problems are either centralized or distributed which are not ideal for these real life applications. Very few strictly local algorithms for wireless sensor networks exist in the literature. In this thesis, we consider some of these optimization problems of sensor networks, for example, sleep-wake scheduling, mobile dispersion, mobile object monitoring, and gathering problems. We also consider the depth adjustment problem of underwater sensor networks. We design cellular automaton based local algorithms for these problems. The cellular automaton is a bioinspired model used to model different physical systems including wireless sensor networks. One of the main advantages of using cellular automaton based algorithms is that they need very little local information to compute a solution. We perform different simulations and analysis and find that our algorithms are efficient in practice. / Thesis (Ph.D, Computing) -- Queen's University, 2012-11-25 13:37:36.854
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/7647 |
Date | 26 November 2012 |
Creators | Choudhury, Salimur |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0018 seconds