Return to search

Using Ontologies to Query Probabilistic Numerical Data: Extended Version

We consider ontology-based query answering in a setting where some of the data are numerical and of a probabilistic nature, such as data obtained from uncertain sensor readings. The uncertainty for such numerical values can be more precisely represented by continuous probability distributions than by discrete probabilities for numerical facts concerning exact values. For this reason, we extend existing approaches using discrete probability distributions over facts by continuous probability distributions over numerical values. We determine the exact (data and combined) complexity of query answering in extensions of the well-known description logics EL and ALC with numerical comparison operators in this probabilistic setting. / This is an extended version of the article in: Proceedings of the 11th International Symposium on Frontiers of Combining Systems. This version has been revised based on the comments of the reviewers.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79592
Date20 June 2022
CreatorsBaader, Franz, Koopmann, Patrick, Turhan, Anni-Yasmin
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:report, info:eu-repo/semantics/report, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa2-785040, qucosa:78504

Page generated in 0.0019 seconds