Description Logics (DLs) are a class of knowledge representation formalisms that can represent terminological and assertional knowledge using a well-defined semantics. Often, knowledge engineers are experts in their own fields, but not in logics, and require assistance in the process of ontology design. This thesis presents three methods that can extract terminological knowledge from existing data and thereby assist in the design process. They are based on similar formalisms from Formal Concept Analysis (FCA), in particular the Next-Closure Algorithm and Attribute-Exploration. The first of the three methods computes terminological knowledge from the data, without any expert interaction. The two other methods use expert interaction where a human expert can confirm each terminological axiom or refute it by providing a counterexample. These two methods differ only in the way counterexamples are provided.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-70199 |
Date | 29 June 2011 |
Creators | Distel, Felix |
Contributors | Technische Universtiät Dresden, Fakultät Informatik, Prof. Dr.-Ing. Franz Baader, Prof. Dr. rer. nat. Gerd Stumme |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0023 seconds