Return to search

Historical handwriting representation model dedicated to word spotting application / Modèle de représentation des écritures pour la recherche de mots par similarité dans les documents manuscrits du patrimoine

L’objectif du travail de thèse est de proposer un modèle de représentation des écritures dans les images de documents du patrimoine sans recourir à une transcription des textes. Ce modèle, issu d’une étude très complète des méthodes actuelles de caractérisation des écritures, est à la base d’une proposition de scénario de recherche par similarité de mots, indépendante du scripteur et ne nécessitant pas d’apprentissage. La recherche par similarité proposée repose sur une structure de graphes intégrant des informations sur la topologie, la morphologie locale des mots et sur le contexte extrait du voisinage de chaque point d’intérêt. Un graphe est construit à partir du squelette décrit en chaque point sommet par le contexte de formes, descripteur riche et compact. L’extraction de mots est assurée par une première étape de localisation grossière de régions candidates, décrites par une séquence déduite d’une représentation par graphes liée à des critères topologiques de voisinage. L’appariement entre mots repose ensuite sur une distance dynamique et un usage adapté du coût d’édition approximé entre graphes rendant compte de la nature bi-dimensionnelle de l’écriture. L’approche a été conçue pour être robuste aux distorsions de l’écriture et aux changements de scripteurs. Les expérimentations sont réalisées sur des bases de documents manuscrits patrimoniaux exploitées dans les compétitions de word-spotting. Les performances illustrent la pertinence de la proposition et ouvrent des voies nouvelles d’investigation dans des domaines d’applications autour de la reconnaissance de symboles et d’écritures iconographiques / As more and more documents, especially historical handwritten documents, are converted into digitized version for long-term preservation, the demands for efficient information retrieval techniques in such document images are increasing. The objective of this research is to establish an effective representation model for handwriting, especially historical manuscripts. The proposed model is supposed to help the navigation in historical document collections. Specifically speaking, we developed our handwriting representation model with regards to word spotting application. As a specific pattern recognition task, handwritten word spotting faces many challenges such as the high intra-writer and inter-writer variability. Nowadays, it has been admitted that OCR techniques are unsuccessful in handwritten offline documents, especially historical ones. Therefore, the particular characterization and comparison methods dedicated to handwritten word spotting are strongly required. In this work, we explore several techniques that allow the retrieval of singlestyle handwritten document images with query image. The proposed representation model contains two facets of handwriting, morphology and topology. Based on the skeleton of handwriting, graphs are constructed with the structural points as the vertexes and the strokes as the edges. By signing the Shape Context descriptor as the label of vertex, the contextual information of handwriting is also integrated. Moreover, we develop a coarse-to-fine system for the large-scale handwritten word spotting using our representation model. In the coarse selection, graph embedding is adapted with consideration of simple and fast computation. With selected regions of interest, in the fine selection, a specific similarity measure based on graph edit distance is designed. Regarding the importance of the order of handwriting, dynamic time warping assignment with block merging is added. The experimental results using benchmark handwriting datasets demonstrate the power of the proposed representation model and the efficiency of the developed word spotting approach. The main contribution of this work is the proposed graph-based representation model, which realizes a comprehensive description of handwriting, especially historical script. Our structure-based model captures the essential characteristics of handwriting without redundancy, and meanwhile is robust to the intra-variation of handwriting and specific noises. With additional experiments, we have also proved the potential of the proposed representation model in other symbol recognition applications, such as handwritten musical and architectural classification

Identiferoai:union.ndltd.org:theses.fr/2014STET4019
Date18 November 2014
CreatorsWang, Peng
ContributorsSaint-Etienne, Largeron, Christine
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds