Return to search

On-demand re-optimization of integration flows

Integration flows are used to propagate data between heterogeneous operational systems or to consolidate data into data warehouse infrastructures. In order to meet the increasing need of up-to-date information, many messages are exchanged over time. The efficiency of those integration flows is therefore crucial to handle the high load of messages and to reduce message latency. State-of-the-art strategies to address this performance bottleneck are based on incremental statistic maintenance and periodic cost-based re-optimization. This also achieves adaptation to unknown statistics and changing workload characteristics, which is important since integration flows are deployed for long time horizons. However, the major drawbacks of periodic re-optimization are many unnecessary re-optimization steps and missed optimization opportunities due to adaptation delays. In this paper, we therefore propose the novel concept of on-demand re-optimization. We exploit optimality conditions from the optimizer in order to (1) monitor optimality of the current plan, and (2) trigger directed re-optimization only if necessary. Furthermore, we introduce the PlanOptimalityTree as a compact representation of optimality conditions that enables efficient monitoring and exploitation of these conditions. As a result and in contrast to existing work, re-optimization is immediately triggered but only if a new plan is certain to be found. Our experiments show that we achieve near-optimal re-optimization overhead and fast workload adaptation.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:86380
Date04 July 2023
CreatorsBöhm, Matthias, Habich, Dirk, Lehner, Wolfgang
PublisherElsevier
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation0306-4379, 10.1016/j.is.2014.03.005

Page generated in 0.0022 seconds