<p>Future long-duration space missions will take humans farther from the support resources of Earth than ever before. These missions will require microgravity surgical technologies in the case of an emergency that necessitates medical intervention. This experiment integrated three different surgical technologies for testing in weightlessness on parabolic flights: a surgical containment dome, a multi-function surgical wand, and a microgravity blood-air separator. Two fluid loops were utilized: one in which the surgical wand, containment dome, and a wound model were used to provide a realistic mixture of blood simulant and air to the blood-air separator. The other fluid loop used prescribed mixture ratios of air and blood to test the performance of the separator under varying conditions. The results of this experiment showed that the multi-functional surgical tool and dome functioned as designed. In addition, each separator successfully separated the blood and air from the mixture, allowing for future blood transfusion. With this demonstration, each system used in this experiment qualifies as technology readiness level 6. Advancing the technology readiness level of these technologies further will require long duration zero-g testing on-orbit before inclusion in authentic space mission emergency surgical strategy. </p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/21689279 |
Date | 09 December 2022 |
Creators | Jordan Wesley Soberg (14231915) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY-NC-SA 4.0 |
Relation | https://figshare.com/articles/thesis/Integrating_Blood_Air_Separation_with_a_Microgravity_Surgical_Facility/21689279 |
Page generated in 0.0028 seconds