The aim of this work was to find out whether and how nitrate reduction in roots would facilitate survival of hypoxic and anoxic (flooding)-phases. For that purpose, we compared the response of roots of hydroponically grown tobacco wildtype (Nicotiana tabacum cv. Gatersleben) and of a transformant (LNR-H) with no nitrate reductase (NR) in the roots but almost normal NR in leaves (based on a nia2-double mutant). As an additional control we used occasionally a 35S-transformant of the same nia2-double mutant, which on the same genetic background constitutively expressed NR in all organs. In some cases, we also compared the response of roots from WT plants, which had been grown on tungstate for some time in order to completely suppress NR activity. The following root parameters were examined: 1) Growth and morphology 2) Root respiration rates and leaf transpiration 3) Metabolite contents in roots (ATP, hexosemonophosphates, free sugars, starch, amino acids, total protein) 4) Inorganic cation and anion contents 5) Lactate and ethanol production 6) Extractable LDH-and ADH-activities 7) Cytosolic pH values (by 31P-NMR) 8) NO Cation and anion contents of roots from WT and LNR-H were only slightly different, confirming that these plants would be better suited for our purposes than the widely used comparison of nitrate-versus ammonium-grown plants, which usually show up with dramatic differences in their ion contents. Normoxia: LNR-H-plants had shorter and thicker roots than WT with a lower roots surface area per leaf FW. This was probably the major cause for the significantly lower specific leaf transpiration of LNR-H. WT-roots had lower respiration rates, lower ATP-and HMP-contents, slightly lower sugar- and starch contents and somewhat lower amino acid contents than LNR-H roots. However, total protein/FW was almost identical. Obviously the LNR-H transformants did not suffer from N-defciency, and their energy status appeared even better than that of WT-roots. Data from the 35S-transformant were similar to those of WT. This indicates that the observed differences between WT and LNR-H were not due to unknown factors of the genetic nia2-background, but that they could be really traced back to the presence resp. absence of nitrate reduction. Anoxia: Under short-term anoxia (2h) LNR-H plants, but not WT-plants exhibited clear symptoms of wilting, although leaf transpiration was lower with LNR-H. Reasons are not known yet. LNR-H roots produced much more ethanol (which was excreted) and lactate compared to WT, but extractable ADH and LDH activities, were not induced by anoxia. However, the LDH activity background was twice as high as that of the WT troughout the time period studied. Tungstate-treated WT-roots also gave higher fermentation rates than normal WT roots. Sugar- and HMP-contents remained higher in LNR-H roots than in WT. NR in WT roots was activated under anoxia and roots accumulated nitrite, which was also released to the medium. 31P-NMR spectroscopy showed that LNR-H- roots, in spite of their better energy status, acidified their cytosol more than WT roots. Conclusions: Obviously nitrate reduction affects - by as yet unknown mechanisms - root growth and morphology. The much lower anoxic fermentation rates of WT-roots compared to LNR-H roots could not be traced back to an alternative NADH consumption by nitrate reduction, since NR activity was too low for that. An overall estimation of H+-production by glycolysis, fermentation and nitrate reduction (without nitrite reduction, which was absent under anoxia) indicated that the stronger cytosolic acidification of anoxic LNR-H roots was based on their higher fermentation rates. Thus, nitrate reduction under anoxia appears advantageous because of lower fermentation rates and concomitantly lower cytosolic acidification. However, it remained unclear why fermentation rates were so different. Perspective: Preliminary experiments had indicated that WT-roots produced more nitric oxide (NO) under anoxia than LNR-H-roots. Accordingly, we suggest that nitrate reduction, beyond a merely increased NADH-consumption, would lead to advantageous changes in metabolism, eventually via NO-production, which is increasingly recognized as an important signaling compound regulating many plant functions. / Ziel der Arbeit war es herauszufinden, ob und wie Nitratreduktion in der Wurzel das Überleben von hypoxischen und anoxischen (Überflutungs)-Phasen erleichtert. Hierzu wurden Wurzeln eines hydroponisch angezogenen Tabak-Wildtyps (Nicotiana tabacum cv. Gatersleben), sowie einer Tabaktransformante auf der Basis der nia Doppelmutante, welche Nitratreduktase nur noch in den Blättern exprimierte (LNR-H), im Hinblick auf verschiedene Parameter verglichen. Als zusätzliche Kontrolle wurde eine 35S-Transformante der nia-Doppelmutante gelegentlich in die Vergleiche mit einbezogen, da diese auf dem genetischen Hintergrund der nia Doppelmutante NR in Blättern und Wurzeln konstitutiv exprimierte mit Aktivitäten, die in etwa denen des Wildtyps entsprachen. In einigen Fällen wurde die Nitratreduktase des WT durch Aufzucht auf Wolframat (an Stelle von Molybdat) gehemmt, und diese Pflanzen wurden ebenfalls mit normalen WT-Wurzeln verglichen. Folgende Parameter wurden untersucht: 1) Wachstum und Wurzelmorphologie 2) Atmungsraten, Transpirationsraten 3) Metabolitgehalte (ATP, Hexosemonophosphate, freie Zucker, Aminosäuren) 4) Gehalte anorganischer Kationen und Anionen 5) Lactat- und Ethanolproduktion 6) LDH und ADH-Aktivitäten in Wurzelextrakten 7) Cytosolische pH-Werte mittels 31P-NMR 8) NO Die Analyse des Kationen- und Anionengehaltes der Wurzeln bestätigte zunächst, das die LNR-H-Transformante und der WT sich in dieser Hinsicht nur unwesentlich unterschieden und von daher zum weiteren Vergleich besser geeignet waren als die vielfach verwendete Paarung von nitrat-bzw- ammoniumernährten Pflanzen. Normoxia: LNR-H-Pflanzen hatten kürzere und dickere Wurzeln mit einer niedrigeren Wurzeloberfläche pro Blattfrischgewicht als WT. Dies war vermutlich die Hauptursache für die deutlich niedrigeren Transpirationsraten von LNR-H. WT-Wurzeln hatten unter normoxischen Bedingungen niedrigere Atmungsraten, niedrigere ATP und HMP-Gehalte, etwas niedrigere Zucker und Stärkegehalte und etwas niedrigere Gesamt-Aminosäuregehalte als LNR-H-Wurzeln. Andererseits waren die Gesamt-Proteingehalte (pro FG) praktisch identisch. Offensichtlich litt die LNR-H-Transformante nicht unter N-Mangel, und ihr energetischer Zustand war unter Normalbedingungen eher besser war als der des WT. Die Daten der 35S-Transformante entsprachen weitgehend denen des WT. Dies zeigt, dass die beobachteten Unterschiede nicht auf unbekannten Faktoren des nia2-Hintergrunds beruhten, sondern definitiv auf dem Vorhandensein (bzw. der Abwesenheit) von Nitratreduktion. Anoxia: Unter Anoxia (4h) traten bei LNR-H deutliches Welken der Blätter auf, bei WT dagegen nicht. Die Ursachen sind unklar. Unter Anoxia produzierten LNR-H-Wurzeln sehr viel mehr Ethanol und Lactat als WT, obwohl weder ADH-noch LDH Aktivitäten in Wurzelextrakten unter Anoxia erhöht wurden. Allerdings besaß die LNR-H Transformante permanent doppelt so hohe LDH Aktivitäten wie der WT.h. Auch Wolframat-versorgte WT-Wurzeln produzierten unter Anoxia mehr Lactat und Ethanol als der normale WT. Zucker und HMP-Gehalte blieben in LNR-H höher als in WT. Die NR von WT-Wurzeln wurde unter Anoxia aktiviert und die Wurzeln akkumulierten Nitrit, das großteils an die Nährlösung abgegeben wurde. 31P-NMR-Messungen zeigten, dass LNR-H-Wurzeln trotz ihres besseren Energiezustandes unter Anoxia das Cytosol stärker ansäuerten als WT-Wurzeln. Schlussfolgerungen: Offensichtlich beeinflusst Nitratreduktion auf noch unbekannte Weise Wachstum und Morphologie der Wurzeln unter Normoxia. Die viel niedrigeren Gärungsraten der WT-Wurzeln unter Anoxia konnten nicht auf einen alternativen NADH-Verbrauch der Nitratreduktion zurückgeführt werden, weil dazu die NR-Aktivitäten zu niedrig waren. Bilanzierung der H+-Produktion durch Glycolyse, Gärung und Nitratreduktion zeigte, dass die stärkere cytosolische Ansäuerung der anoxischen LNR-H Wurzeln auf den insgesamt höheren Gärungsraten der LNR-H-Wurzeln beruhen muss. Nitratreduktion ist unter Anoxia also vorteilhaft, weil sehr viel weniger Gärung abläuft und damit cytosolische Ansäuerung abgeschwächt wird. Warum allerdings die Gärungsraten so unterschiedlich waren, blieb unklar. Ausblick: Vorversuche hatten ergeben, dass WT-Wurzeln unter Anoxia mehr Stickstoffmonoxid (NO) produzierten als LNR-H-Wurzeln. Es wird deshalb hypothetisch vorgeschlagen, dass die Nitratreduktion über den bloßen NADH-Verbrauch hinaus durch eine anoxische NO-Produktion ein Signal erzeugt, das vorteilhaft regulierend in Stoffwechsel und Wachstum eingreift.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:292 |
Date | January 2002 |
Creators | Stoimenova, Maria |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds