Cette thèse explore les domaines magnétiques et les parois de domaine (PD), dans des nanotubes (NTs) métalliques ferromagnétiques individuels (diamètres 50-400 nm) au moyen de microscopies magnétiques et de modélisation numérique. Le travail a bénéficié d’une collaboration internationale avec TU Darmstadt (synthèse), les synchrotrons Elettra et Soleil ainsi que CNRS CEMES (imagerie magnétique). En utilisant des méthodes électrochimiques et des gabarits nanoporeux, nous avons fabriqué des NTs de Ni, NiCo, CoNiB et NiFeB ainsi que des éléments fil-tube de Ni. Pour l’imagerie, nous utilisons principalement le dichroïsme circulaire magnétique de rayons X associé à la microscopie à emission de photoelectrons (XMCD-PEEM). Nous avons réalisé les premières images microscopiques de domaines magnétiques dans les NTs. Dans des tubes CoNiB longs (30µm), nous avons observé un grand nombre de domaines azimutaux séparés par des PD très étroites. Cela contraste avec la littérature et les expériences récentes où seuls des domaines axiaux apparaissent pour une géométrie similaire. Par recuit, en changeant la composition chimique ou simplement en diminuant le diamètre des NTs, nous avons également pu obtenir les domaines axiaux – préparation des domaines presque à la carte. Nous avons démontré le renversement des domaines axiaux et azimutaux avec un champ magnétique. En vue d’ouvrir la voie à des tubes multicouches - un équivalent de films plats multicouches qui forment une brique basique de spintronique actuelle, nous avons obtenu deux couches magnétiques découplées par un intercalaire d’oxyde. Ces structures et leurs imagerie ouvrent la voie à la spintronique 3D basée sur des réseaux de tubes verticaux. / This thesis explores magnetic configurations, namely magnetic domains and domain walls (DWs) in single ferromagnetic metallic nanotubes (diameters 50–400nm) by means of magnetic microscopies and numerical modelling. The work benefited from international collaboration with TU Darmstadt (synthesis), synchrotrons Elettra and Soleil as well as CNRS CEMES (magnetic imaging). Using electrochemical methods and nanoporous templates, we could fabricate Ni, NiCo, CoNiB, and NiFeB nanotubes as well as Ni wire-tube elements. For the imaging, we relied mainly on X-ray Magnetic Circular Dichroism coupled with PhotoEmission Electron Microscopy (XMCD-PEEM). We show the first experimental microscopy images of magnetic domains in metallic nanotubes. In long (30µm) CoNiB tubes, we observed many azimuthal (flux-closure) magnetic domains separated by very narrow DWs. This is in contrast with literature and recent experiments where only axial domains appeared for similar geometry. By annealing, changing the chemical composition or just decreasing the nanotube diameter we could obtain also the axial domains. Therefore, tubes are versatile as magnetic domains can be prepared almost à la carte. We demonstrated switching of both axial and azimuthal domains with a magnetic field. We imaged also multilayered tubes – an equivalent of multilayered flat films that form a basic brick of current spintronics. We obtained two magnetic layers (exchange-) decoupled by an oxide spacer. Such a first-of-its-kind structure and its imaging paves the way towards 3D spintronics and magnetism based on vertical arrays of tubes.
Identifer | oai:union.ndltd.org:theses.fr/2017GREAY063 |
Date | 03 October 2017 |
Creators | Staňo, Michal |
Contributors | Grenoble Alpes, Fruchart, Olivier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds