Plusieurs applications modernes nécessitent un traitement de flux massifs de données XML, cela crée de défis techniques. Parmi ces derniers, il y a la conception et la mise en ouvre d'outils pour optimiser le traitement des requêtes XPath et fournir une estimation précise des coûts de ces requêtes traitées sur un flux massif de données XML. Dans cette thèse, nous proposons un nouveau modèle de prédiction de performance qui estime a priori le coût (en termes d'espace utilisé et de temps écoulé) pour les requêtes structurelles de Forward XPath. Ce faisant, nous réalisons une étude expérimentale pour confirmer la relation linéaire entre le traitement de flux, et les ressources d'accès aux données. Par conséquent, nous présentons un modèle mathématique (fonctions de régression linéaire) pour prévoir le coût d'une requête XPath donnée. En outre, nous présentons une technique nouvelle d'estimation de sélectivité. Elle se compose de deux éléments. Le premier est le résumé path tree: une présentation concise et précise de la structure d'un document XML. Le second est l'algorithme d'estimation de sélectivité: un algorithme efficace de flux pour traverser le synopsis path tree pour estimer les valeurs des paramètres de coût. Ces paramètres sont utilisés par le modèle mathématique pour déterminer le coût d'une requête XPath donnée. Nous comparons les performances de notre modèle avec les approches existantes. De plus, nous présentons un cas d'utilisation d'un système en ligne appelé "online stream-querying system". Le système utilise notre modèle de prédiction de performance pour estimer le coût (en termes de temps / mémoire) d'une requête XPath donnée. En outre, il fournit une réponse précise à l'auteur de la requête. Ce cas d'utilisation illustre les avantages pratiques de gestion de performance avec nos techniques
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00779309 |
Date | 16 May 2011 |
Creators | Alrammal, Muath |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0015 seconds