Return to search

Novel protein interactors of urokinase-type plasminogen activator receptor

The plasminogen activator (PA) system plays an important role in cell adhesion, migration and invasion, and may require the coordinated expression of various proteins. The human urokinase-type plasminogen activator (uPA) receptor (uPAR) is a central protein component of the PA system. By binding its ligand uPA, uPAR can direct proteolysis of the extracellular matrix. Also, it is now apparent that uPAR can initiate proteolytic independent signal transduction to influence angiogenesis, inflammation, wound repair and tumour progression. To determine whether any novel proteins interacted with uPAR, a yeast two-hybrid screening analysis was undertaken using alternate uPAR domain constructs as baits. These included full-length three domain uPAR (uPAR-DIDIIDIII), two domain uPAR (uPAR-DIIDIII), and each individual uPAR domain (uPAR-DI, uPAR-DII and uPAR-DIII). A number of proteins were identified as putative candidate interactors for the alternate constructs, with two of special interest for uPAR-DIDIIDIII. These were the heat shock protein Mrj, and the extracellular matrix protein fibulin-2. The protein Mrj was shown to bind uPAR both in vitro and in vivo using GST-pull down and co-immunoprecipitation assays respectively. The GST-pull down assay identified the interaction between Mrj and uPAR dependent on the C-terminal domain of Mrj and DI of uPAR. Using in vivo co-immunoprecipitation analysis, Mrj also bound to uPAR. Preliminary data suggest the association between uPAR and Mrj may play a role in the regulation of apoptosis. In regard to the uPAR interactor of fibulin-2, a calcium dependent binding interaction with uPAR was identified using the GST-pull down assay. However due to the large molecular weight and stringent conditions needed to solubilise fibulin-2, it was not possible to co-immunoprecipitate both uPAR and fibulin-2. Together, the identification of both Mrj and fibulin-2 amongst other candidate interactors of uPAR presented here provides further insight into the intricate relationship between uPAR and other proteins which may influence a range of biological functions.

Identiferoai:union.ndltd.org:ADTP/188040
Date January 2005
Creatorsde Bock, Charles Edo, St George Clinical School, UNSW
PublisherAwarded by:University of New South Wales. St George Clinical School
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Charles Edo de Bock, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0015 seconds