Return to search

Thermal Crack Risk Estimation and Material Properties of Young Concrete

This thesis presents how to establish a theoretical model to predict risk of thermal cracking in young concrete when cast on ground or an arbitrary construction. The crack risk in young concrete is determined in two steps: 1) calculation of temperature distribution within newly cast concrete and adjacent structure; 2) calculation of stresses caused by thermal and moisture (due to self-desiccation, if drying shrinkage not included) changes in the analyzed structure. If the stress reaches the tensile strength of the young concrete, one or several cracks will occur. The main focus of this work is how to establish a theoretical model denoted Equivalent Restraint Method model, ERM, and the correlation between ERM models and empirical experiences. A key factor in these kind of calculations is how to model the restraint from any adjacent construction part or adjoining restraining block of any type. The building of a road tunnel and a railway tunnel has been studied to collect temperature measurements and crack patterns from the first object, and temperature and thermal dilation measurements from the second object, respectively. These measurements and observed cracks were compared to the theoretical calculations to determine the level of agreement between empirical and theoretical results. Furthermore, this work describes how to obtain a set of fully tested material parameters at CompLAB (test laboratory at Luleå University of Technology, LTU) suitable to be incorporated into the calculation software used. It is of great importance that the obtained material parameters describe the thermal and mechanical properties of the young concrete accurately, in order to perform reliable crack risk calculations.  Therefore, analysis was performed that show how a variation in the evaluated laboratory tests will affect the obtained parameters and what effects it has on calculated thermal stresses.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-65495
Date January 2017
CreatorsHösthagen, Anders
PublisherLuleå tekniska universitet, Byggkonstruktion och brand, Luleå
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLicentiate thesis / Luleå University of Technology, 1402-1757

Page generated in 0.0023 seconds