Return to search

Phase, Frequency, and Timing Synchronization in Fully Digital Receivers with 1-bit Quantization and Oversampling

With the increasing demand for faster communication systems, soon data rates in the terabit regime (100 Gbit/s and beyond) are required, which yields new challenges for the design of analog-to-digital converters (ADCs) since high bandwidths imply high sampling rates. For sampling rates larger than 300MHz, which we now achieve with 5G, the ADC power consumption per conversion step scales quadratically with the sampling rate. Thus, ADCs become a major energy consumption bottleneck. To circumvent this problem, we consider digital receivers based on 1-bit quantization and oversampling. We motivate this concept by a brief comparison of the energy efficiency of a recently proposed system employing 1-bit quantization and oversampling to the conventional approach using high resolution quantization and Nyquist rate sampling. Our numerical results show that the energy efficiency can be improved significantly by employing 1-bit quantization and oversampling at the receiver at the cost of increased bandwidth.
The main part of this work is concerned with the synchronization of fully digital receivers using 1-bit quantization and oversampling. As a first step, we derive performance bounds for phase, timing, and frequency estimation in order to gain a deeper insight into the impact of 1-bit quantization and oversampling. We identify uniform phase and sample dithering as crucial to combat the non-linear behavior introduced by 1-bit quantization. This dithering can be implemented by sampling at an irrational intermediate frequency and with an oversampling factor with respect to the symbol rate that is irrational, respectively. Since oversampling results in noise correlation, a closed form expression of the likelihood function is not available. To enable an analytical treatment we thus study a system model with white noise by adapting the receive filter bandwidth to the sampling rate. Considering the aforementioned dithering, we obtain very tight closed form lower bounds on the Cramér-Rao lower bound (CRLB) in the large sample regime. We show that with uniform phase and sample dithering, all large sample properties of the CRLB of the unquantized receiver are preserved under 1-bit quantization, except for a signal-to-noise ratio (SNR) dependent performance loss that can be decreased by oversampling. For the more realistic colored noise case, we discuss a numerically computable upper bound of the CRLB and show that the properties of the CRLB for white noise still hold for colored noise except that the performance loss due to 1-bit quantization is reduced.
Assuming a neglectable frequency offset, we use the least squares objective function to derive a typical digital matched filter receiver with a data-and timing-aided phase estimator and a timing estimator that is based on square time recovery. We show that both estimators are consistent under very general assumptions, e.g., arbitrary colored noise and stationary ergodic transmit symbols. Performance evaluations are done via simulations and are compared against the numerically computable upper bound of the CRLB. For low SNR the estimators perform well but for high SNR they converge to an error floor. The performance loss of the phase estimator due to decision-directed operation or estimated timing information is marginal.
In summary, we have derived practical solutions for the design of fully digital receivers using 1-bit quantization and oversampling and presented a mathematical analysis of the proposed receiver structure. This is an important step towards enabling energy efficient future wireless communication systems with data rates of 100 Gbit/s and beyond.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:76662
Date16 November 2021
CreatorsSchlüter, Martin
ContributorsFettweis, Gerhard, de Lamare, Rodrigo C., Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds