Tertiary butyl alcohol (TBA) is used as a fuel oxygenate and is the main breakdown component of methyl tert butyl ether (MTBE). As such, TBA is found in water systems through storage leaks and spills, presence of MTBE in the water, and as an impure byproduct of MTBE-blended fuels. It presents several health hazards and is a suspected carcinogen. Studies involving aquatic life, mice and rats indicate that TBA is a concern at low concentrations. Wastewater removal of tert butyl alcohol (TBA) has been limited to methodology used by MTBE or by anaerobic or aerobic methods. Neither set of techniques is applicable to TBA due to its long biological degradation period, its very specific conditions for anerobic or aerobic treatment, and its low Henry's law constant, low transformation rate, and its high mobility.
The main goal of this project was to determine the adsorption capabilities of different zeolites for TBA. A comparison to previous work done with powdered zeolites and MTBE is shown in the following Chapters. Batch systems of TBA and several different zeolites were examined to determine the best zeolites for TBA adsorption. As shown in Chapter 3, the best zeolites for TBA adsorption over an equilibrium time of 48 hours were silicalite and HiSiv 3000 pellets. Using the two chosen zeolites, silicalite and HiSiv 3000, adsorption isotherms were created and compared against MTBE data using the same data.
The final portion of this project included a continuous system consisting of a zeolite column and a steady flow rate of TBA. The zeolite columns consisted of sole silicalite, sole HiSiv 3000, and different proportions of the two zeolites in the same column. All column experiments were run at similar conditions with variation in the adsorbent bed lengths for easy comparison between the resulting breakthrough curves. At the 3-cm bed length, the zeolite columns outperformed the activated carbon column; however, there was no distinct difference between the zeolite columns. In the 6-cm bed length experiments, there were apparent differences between the two zeolite breakthrough curves. The 9-cm column did not differentiate between the zeolites.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1466 |
Date | 29 April 2008 |
Creators | Butland, Tricia Dorothy |
Contributors | Robert W. Thompson, Advisor, , , John Bergendahl |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0017 seconds