Return to search

Effect of supercritical water on coke formed during dodecane cracking with ZSM-5

The objective of this work was to study the effect of supercritical water on coke formed on ZSM-5 during its use as a dodecane cracking catalyst. ZSM-5 coking was quantified at different reaction times, finding that the presence of supercritical water reduced coke formation by an order of magnitude or more. Coked samples were analyzed using several methods, including temperature programmed oxidation (TPO), attenuated total reflectance infrared (ATR-IR) spectroscopy, carbon-13 nuclear magnetic resonance (13C NMR), diffuse reflectance ultraviolet-visible spectroscopy (DR-UV-vis) and UV-Raman. Coked produced in the absence of SCW was formed by polycyclic aromatic hydrocarbons (PAHs) with more than 4 aromatic rings containing alkyl side chains. Coke produced in the presence of SCW was formed by aromatics with 1 to 3 aromatic rings. The characteristics of coke formed in the absence of water on ZSM-5 that had been pretreated in SCW were intermediate to those of coke formed on fresh ZSM-5 in the presence and absence of water, suggesting that the presence of water influences coke properties. It was also verified that SCW can decrease coke formation due to its effect on Bronsted acidity of the catalyst and ability to promote coke gasification. The effect of coke deposits produced in the presence and absence of SCW on the rate of ethanol dehydration, a model reaction studied under diffusion-controlled conditions, indicated that SCD/SWC coke deactivated less the catalyst than SCD coke.

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2301
Date11 September 2018
CreatorsGuerra, Patricia
ContributorsMichael T Timko, Advisor, Christopher R Lambert, Committee Member, Pratap M Rao, Committee Member, Aaron Deskins, Committee Member
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.002 seconds