Return to search

Berechnung der Schallausbreitung in transversalisotropen Werkstoffen zur Festlegung optimaler Parameter für die Ultraschallprüfung mit Gruppenstrahlern durch Einführung einer vierdimensionalen Punktrichtwirkung

Die zerstörungsfreie Ultraschallprüfung von akustisch anisotropen Werkstoffen stellt auch heute noch eine Herausforderung dar. Die Gefügestruktur in solchen Materialien beeinflusst die Wellenausbreitung derart, dass es zum einen zu starken Streuungen durch die großflächigen Korngrenzen und zum anderen, aufgrund der akustischen Anisotropie, zu einer Richtungsabhängigkeit der Schallgeschwindigkeiten kommt.

In den vergangenen Jahren wurden bereits Lösungsansätze zur mathematischen Modellierung der Schallausbreitung in anisotropen Materialien vorgestellt. Diese basieren in der Regel auf FEM- bzw. FIT- Algorithmen, die durch die Diskretisierung des gesamten Volumens einen hohen Rechenaufwand erfordern und in der täglichen Prüfpraxis aufgrund ihrer Komplexität bei der Parametrierung nur bedingt einsetzbar sind. Aus diesem Grund wird hier ein Ansatz zur Schallfeldberechnung gewählt, der auf die praktische Anwendung von Gruppenstrahler-Prüfköpfen zugeschnitten ist. Während sich andere Verfahren auf einzelne Wellenanteile und monofrequente Lösungen beschränken, um den Rechenaufwand zu reduzieren, können mit diesem Ansatz die reale Signalform des Prüfkopfes sowie alle auftretenden Wellenanteile in homogenen transversalisotropen Medien berücksichtigt werden.

Durch entsprechende Optimierungen im Berechnungsalgorithmus lässt sich das gesamte vierdimensionale Schallfeld eines Gruppenstrahler-Prüfkopfes im Halbraum in kürzester Zeit berechnen. Die analytische Lösung der Wellengleichung für den Halbraum in Form einer Greenschen Funktion wird dabei in eine Gleichung umgeformt, die hier als vierdimensionale Punktrichtwirkung bezeichnet wird. Dieser Modellansatz ermöglicht es, die Parameter eines Gruppenstrahlersystems in der praktischen Anwendung zu überprüfen und durch iterative Rechnungen zu optimieren.

Mit Hilfe einer einfach zu handhabenden Visualisierungstechnik ist es möglich diesen Modellansatz mit realen Schallfeldmessungen zu vergleichen. Dazu werden mit elektrodynamischen Sonden die einzelnen Komponenten des dreidimensionalen Vektors der Teilchenverschiebung an der Oberfläche von Festkörpern abgetastet. Die an den Messpunkten ermittelten Zeitfunktionen des Verschiebungsvektors werden dann dem berechneten Zeitverlauf der Wellenausbreitung gegenübergestellt. Die berechneten und gemessenen Schallfelder stimmen in der Phasenlage und im Amplitudenverlauf gut überein. Die Ergebnisse zeigen, dass mit dem verwendeten Rechenmodell alle in der Realität auftretenden Wellenanteile vollständig berücksichtigt werden und dreidimensionale Problemstellungen aus der Praxis mit diesem Modell korrekt berechnet werden können. / The non-destructive ultrasonic testing of acoustic anisotropic materials is an important challenge. The texture of these materials causes a strong scattering of the sound wave by the extensive grain boundaries and a direction dependent sound velocity by the acoustic anisotropy.

Several approaches for the modelling of the sound propagation in anisotropic materials were presented in the last years. These approaches are normally based on FEM or FIT algorithms using a discretisation of the complete volume. Their calculation needs extensive time and a very complex parameterisation. Thus these algorithms are not suitable in practice of ultrasonic testing. In this work an approach is presented that is optimised for the application of phased array transducers. The new approach considers the real frequency spectrum of the transducer as well as all occurring wave modes in homogeneous transversely isotropic media, whereas other approaches are limited to solutions for single wave modes and single frequencies to reduce the calculation effort.

The appropriate optimisations of the mathematical algorithm allow the fast calculation of the complete four-dimensional transient wave field of a phased array transducer in the half-space. The Green’s functions are derived by an analytical solution of the elastodynamic wave equation for the half-space. These functions will be transformed into an equation which will be referred to in this work as four-dimensional directivity pattern. This approach allows the verification of the parameters of a phased array system and their optimisation by iterative calculations in the practical application.

To get accurate results in these calculations, the experimental verification of the applied mathematical model for the wave propagation is an essential task. The technique presented in this work applies electrodynamic probes, which provides a simple use. The probes can detect the particle displacement at a solid surface in all three spatial directions. The measured time-functions of the wave field will be compared with the calculated time-functions. They show a good accordance in the phase and the amplitude. This confirms that the applied mathematical model considers completely all in practice occurring wave modes. The results further show that three-dimensional problems in practice can be calculated correctly with this model.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:28455
Date07 November 2014
CreatorsVölz, Uwe
ContributorsKühnicke, Elfgard, Erhard, Anton, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds