Return to search

Ethylene to Liquid Hydrocarbons by Heterogeneously Catalyzed Oligomerization on ZSM-5

The aim is to produce aliphatic liquid hydrocarbons using heterogeneous ethylene oligomerization. Thiscould potentially produce renewable synthetic fuels. Heterogeneous catalysis has some advantages overhomogeneous catalysis regarding some sustainability aspects. To achieve this, a setup was built using a heatedfixed bed reactor with an in-situ has chromatography to study conversion and gaseous products, and ex-situGC as well as NMR for analyzing liquid products. Ethylene was oligomerized on a commercial ZSM-5 zeoliteunder varying temperature conditions and feed gas dilution with hydrogen or helium. The gas and liquidproducts were analyzed and evaluated. Additionally, the ZSM-5 was studied at different silica to alumina ratios. The thesis discusses how conversion, liquid yield and selectivity of gas products using GC together withanalysis of liquid products using H-NMR can be used as a simple and quick evaluation. The liquid product isevaluated by the distribution of olefinic and aromatic hydrocarbon species using the hydrogen signal area inthe characteristic chemical shifts of olefinic and aromatic hydrogen. At 250-400oC, 6 bar of ethylene, with andwithout feed dilution, and WHSV of 204 h-1, conversion was consistently above 95% for the diluted 400oCruns. Though the liquid yield fell to around 6%, compared to the best yield at 18% for the pure 300oC run.Diluting the feed had a positive effect on increasing olefinic hydrogen signal while decreasing aromatichydrogen signal. The difference between diluting with H2 or helium had a surprisingly small effect. Decreasingthe Si/Al ratio had no significant effect on performance, while increasing the Si/Al ratio made the zeolite loseits catalytic ability. With a pure ethylene feed the lowest aromatic hydrogen signal was found at 350oC, whilethe olefinic signal did not vary too much with temperature. With diluted feed the higher temperature did leadto a lower olefinic hydrogen signal and higher aromatic hydrogen signal.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-491129
Date January 2022
CreatorsHalldén, Gustav
PublisherUppsala universitet, Fysikalisk kemi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC K, 1650-8297 ; 22037

Page generated in 0.0023 seconds