Les pratiques culturales modifient l'architecture des couverts de manière à augmenter ou diminuer le développement des épidémies mais les processus mis en jeu sont complexes ; des modèles mécanistes simulant l'interaction entre plante et pathogène devraient aider à les clarifier. Les modèles de Plantes Virtuelles, qui permettent de décrire explicitement la structure tridimensionnelle de la plante, semblent particulièrement prometteurs pour exprimer les effets de l'architecture de la plante sur le développement des épidémies. L'objectif de cette étude est d'examiner la possibilité de simuler l'effet de l'architecture des plantes sur le développement de la maladie en utilisant un modèle Plante Virtuelle. Dans ce travail, nous nous intéressons au pathosystème blé-Septoria tritici, dans lequel l'architecture joue un rôle important. En effet, les spores de Septoria tritici sont propagées par les éclaboussures de pluie depuis les feuilles infectées du bas du couvert vers les nouvelles feuilles saines. Notre travail s'est appuyé sur un modèle pré-existant d'épidémie de la septoriose, Septo3D. L'architecture du blé a été étudiée pour une gamme de densités et de date de semis. Les différences de phyllochrone entre traitements ont été dans une gamme susceptible de modifier le développement de la septoriose. Ces variations ont été représentées par un modèle descriptif qui tient compte du nombre de feuilles final et de la photopériode. Une description détaillée des variables d'architecture à l'échelle des organes et du couvert a fourni une documentation originale et complète sur la plasticité de l'architecture du blé. Ces données ont été utilisées pour paramétrer la description du blé dans Septo3D. Globalement, les traitements étudiés ont conduit à de fortes différences de la densité de végétation au cours du temps. Les dynamiques de développement de la septoriose ont été suivies pour trois traitements de densités contrastées. Les cinétiques de la maladie simulées par le modèle étaient conformes aux mesures expérimentales. Bien que, l'approche nécessite davantage de validation, les résultats confirment que l'approche Plante Virtuelle apporte un nouvel éclairage sur les processus et les caractéristiques des plantes qui impactent les épidémies. En conclusion, nous proposons quelques perspectives en vue de nouvelles applications et améliorations de l'approche. / Agronomic practices modify crop architecture in ways that may facilitate or hamper disease development. The processes involved are complex and mechanistic models simulating plant-pathogen interaction should help clarifying them. Virtual Plants, i.e. models in which the three-dimensional structure of the plant is explicitly described, appear specially promising to express the effects of the plant architecture on the epidemic development. The objective of this study is to examine the ability to simulate the effect of plant architecture on disease development using a Virtual Plant model.The work focuses on the pathosystem wheat-Septoria tritici, in which architecture plays an important role because spores of Septoria are propagated from infected leaves to upper healthy leaves by rain splash. We build on a pre-existing model of Septoria epidemics, Septo3D. Wheat architecture was examined for a range of sowing date and density treatments. Differences of phyllochron between treatments were in a range sufficient to likely modify epidemic development; they were well represented by a descriptive model depending on photoperiod and final leaf number. A detailed description of architectural variables at the organ and canopy scale provided an original and comprehensive documentation of the plastic response of wheat, which was used for parameterising the wheat description in Septo3D. Overall, the investigated treatments resulted in strong differences in the time course of vegetation density. Septoria dynamics were monitored in a subset of three treatments of contrasted densities. Simulated disease kinetics were consistent with field measurements. Although, the approach needs further validation, results support that virtual plant modelling provides new insights into the processes and plant traits that impact epidemics. We conclude with prospects for further improvements and applications.
Identifer | oai:union.ndltd.org:theses.fr/2011AGPT0031 |
Date | 06 June 2011 |
Creators | Baccar, Rim |
Contributors | Paris, AgroParisTech, Andrieu, Bruno |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds