Return to search

Coal related bed material agglomeration in pressurized fluidized bed combustion.

The thermodynamic behaviours in a PFBC combustor were simulated for the ash from all of the six coals with sand and limestone as bed material. Ash components determined the ash thermodynamic behaviour at high temperature, and each component had different effects. For assessment of the potential for bed material agglomeration, the temperature at which 15% of the ash would become liquid (T15) was calculated with the coal ash, the cyclone ash and the cyclone ash mixed with varying amounts of limestone. Both the bed ash and fly ash, collected from an industrial PFBC plant, consisted of limestone/lime particles with different extent of sulphation, and coal ash particles. The calcium aluminosilicate material formed on the coal ash particles but not on the limestone particles. The aluminosilicate materials appeared to be formed from fine ash and lime particles at some local hot zones in the boiler. The melted materials may glue ash and bed material particle into large particles leading to bed agglomeration and defluidization. Four mechanisms were proposed for the formation of bed material agglomeration in PFBC, which may occur under different conditions. One mechanism explains the bed material agglomeration with the high localized high temperature zone due to the improper design or operation, while the bed agglomeration through the other three mechanisms results from the unsuitable coals burnt in the PFBC combustor. The maximum char temperature and the minimum T15 were used simultaneously to predict the tendency towards bed material agglomeration in PFBC burning different coals. Both char properties and ash properties should be considered during coal selection process for PFBC, to ameliorate the potential problem of bed agglomeration.

Identiferoai:union.ndltd.org:ADTP/187080
Date January 2006
CreatorsXu, Jiangang, Chemical Sciences & Engineering, Faculty of Engineering, UNSW
PublisherAwarded by:University of New South Wales. School of Chemical Sciences and Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Jiangang Xu, http://unsworks.unsw.edu.au/copyright

Page generated in 0.1138 seconds