Return to search

Surface grafting of polymers via living radical polymerization techniques; polymeric supports for combinatorial chemistry

The use of living radical polymerization methods has shown significant potential to control grafting of polymers from inert polymeric substrates. The objective of this thesis is to create advanced substrates for use in combinatorial chemistry applications through the use of g-radiation as a radical source, and the use of RAFT, ATRP and RATRP living radical techniques to control grafting polymerization. The substrates grafted were polypropylene SynPhase lanterns from Mimotopes and are intended to be used as supports for combinatorial chemistry. ATRP was used to graft polymers to SynPhase lanterns using a technique where the lantern was functionalized by exposing the lanterns to gamma-radiation from a 60Co radiation source in the presence of carbon tetra-bromide, producing short chain polystyrene tethered bromine atoms, and also with CBr4 directly functionalizing the surface. Styrene was then grafted off these lanterns using ATRP. MMA was graft to the surface of SynPhase lanterns, using g-radiation initiated RATRP at room temperature. It was found that the addition of the thermal initiator, AIBN, successfully increased the concentration of radicals to a level where we could achieve proper control of the polymerization. RAFT was used to successfully control the grafting of styrene, acrylic acid and N,N???-dimethylacrylamide to polypropylene SynPhase Lanterns via a -initiated RAFT agent mediated free radical polymerization process using cumyl phenyldithioacetate and cumyl dithiobenzoate RAFT agents. Amphiphilic brush copolymers were produced with a novel combined RAFT and ATRP system. Polystyrene-co-poly(vinylbenzyl chloride) created using gamma-radiation and controlled with the RAFT agent PEPDA was used as a backbone. The VBC moieties were then used as initiator sites for the ATRP grafting of t-BA to give a P(t-BA) brush that was then hydrolyzed to produce a PAA brush polymer. FMOC loading tests were conducted on all these lanterns to assess their effectiveness as combinatorial chemistry supports. It was found that the loading could be controlled by adjusting the graft ratio of the lanterns and had a comparable loading to those commercially produced by Mimotopes.

Identiferoai:union.ndltd.org:ADTP/187661
Date January 2006
CreatorsZwaneveld, Nikolas Anton Amadeus, Chemical Engineering & Industrial Chemistry, UNSW
PublisherAwarded by:University of New South Wales. Chemical Engineering and Industrial Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Nikolas Anton Amadeus Zwaneveld, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0018 seconds