Return to search

The relevance of specific molecular and cellular effectors during murine cytomegalovirus infection

[Truncated abstract] The design and development of effective anti-viral immunotherapies requires a comprehensive understanding of the cellular and molecular processes that are involved in the generation and regulation of immune responses. The fundamental objective of the immune system is to successfully complete the task of eliminating/controlling the invading pathogen without causing overt pathology. Cytomegaloviruses (CMVs) are large DNA viruses that are able to evade immune attack and persist lifelong within the host. In a healthy host, CMV causes an asymptomatic infection, but in instances of decreased immune functions, such as in newborns, acquired immunodeficiency syndrome (AIDS) patients and transplant recipients, the infection can result in serious morbidity and mortality. Thus, human CMV (HCMV) is a clinically important pathogen and an understanding of the pathogenesis, mechanisms of immune subversion and, importantly the cascade of immune events that ensue following infection is highly relevant. The studies presented in this thesis have provided useful insight into various aspects of viral immunity and it is hoped that they will assist in the design of more effective therapies against viruses of clinical importance. Genetic variability in humans can greatly influence anti-viral immune responses and the outcome of viral infection. ... Furthermore, these studies provide novel evidence that NK cells are also crucial for the control of virus in some organs of susceptible mice during early acute infection. The data reveals that both NK cells and CD8+ T cells utilise perforin- and IFN-? dependent control of MCMV. Furthermore, these studies provide novel evidence that protection mediated by Ly49H+ NK cells in resistant mice is dependent on perforin. Chapter 3 focuses on the biological relevance of Grz during MCMV infection. These studies found that GrzA and GrzB are essential components of the machinery involved in limiting MCMV during acute infection. These analyses also provide the first evidence suggesting that GrzM plays a role, albeit minor, in controlling MCMV replication. Furthermore, the current studies suggest that Grz can mediate direct antiviral activities independent of the induction of cell death in conjunction with perforin. Interestingly, in the absence of both GrzA and GrzB (GrzAB), mice were as susceptible to MCMV infection as perforin-deficient mice. However, unlike perforin-deficient mice, GrzAB-deficient mice controlled and survived the infection. In Chapter 4 the roles of perforin, GrzA and GrzB in anti-viral immunity and immunopathology during MCMV infection were examined. These studies show that NK cell-derived perforin is required to eliminate infected targets as well as activated effector cells, suggesting that NK cells are crucial not only in defensive immunity but also in limiting the immune activation that follows MCMV infection. In summary, the studies presented in this thesis define the significant role played by specific effector molecules in limiting MCMV replication during different stages of this viral infection. Furthermore, these studies provide novel evidence that perforin, GrzA and GrzB play distinct roles in defensive immunity and limiting immunopathology during MCMV infection.

Identiferoai:union.ndltd.org:ADTP/194787
Date January 2008
CreatorsSumaria, Nital
PublisherUniversity of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia. Centre for Ophthalmology and Visual Science
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Nital Sumaria, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0078 seconds