Return to search

Properties of Composites Containing Spherical Inclusions Surrounded by an Inhomogeneous Interphase Region

The properties of composite materials in which spherical inclusions are embedded in a matrix of some kind, have been studied for many decades and many analytical models have been developed which measure these properties. There has been a steady progression in the complexity of models over the years, providing greater insight into the nature of these materials and improving the accuracy in the measurement of their properties. Some of the properties with which this thesis is concerned are, the elastic, thermal and electrical properties of such composites. The size of the spherical inclusion which acts as the reinforcing phase, has a major effect on the overall properties of composite materials. Once an inclusion is embedded into a matrix, a third region of different properties between the inclusion and matrix is known to develop which is called the interphase. It is well known in the composite community that the smaller the inclusion is, the larger the interphase region which develops around it. Therefore, with the introduction of nanoparticles as the preferred reinforcing phase for some composites, the interphase has a major effect on its properties. It is the aim of this thesis to consider the role of the interphase on the properties of composites by modeling it as an inhomogeneous region. There is much scientific evidence to support the fact that the interphase has an inhomogeneous nature and many papers throughout the thesis are cited which highlight this. By modeling the inhomogeneous properties by arbitrary mathematical functions, results are obtained for the various properties in terms of these general functions. Some specific profiles for the inhomogeneous region are considered for each property in order to demonstrate and test the models against some established results.

Identiferoai:union.ndltd.org:ADTP/210260
Date January 2007
CreatorsLombardo, Nick, e56481@ems.rmit.edu.au
PublisherRMIT University. Mathematical and Geospatial Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Nick Lombardo

Page generated in 0.002 seconds