Return to search

Macromolecular fouling during membrane filtration of complex fluids

Macromolecular components, including protein and polysaccharides, are viewed as one type of major foulants in the complex feed membrane filtration systems such as membrane bioreactor (MBR). In this thesis, the mechanisms of macromolecular fouling including protein and polysaccharide in the complex feed solution are explored by using Bovine serum albumin (BSA) and alginate as model solution. During the filtration of BSA and washed yeast with 0.22 ????m PVDF membrane, it was found that the critical flux of mixture solution was controlled by washed yeast concentration while the existence of BSA significantly changed the cake reversibility of much larger particles. The fouling mechanisms of alginate, as a model polysaccharide solution, were investigated both in dead end and crossflow membrane filtration. In the dead end experiments, it was found that the cake model appears to fit the entire range of the ultrafiltration data while the consecutive standard pore blocking model and cake model are more applicable to microfiltration membranes. The alginate was featured with high specific cake resistance and low compressibility despite some variations between different membranes. The specific cake resistance ( c ) is similar to c of BSA and actual extracellular polymer substance (EPS) in MBR systems reported in the literature, and higher than that of many colloidal particles. In a system contained alginate-particles mixture, it was found that the existence of alginate dramatically increased the cake specific resistance and decreased the cake compressibility. The fouling mechanism of alginate was also studied using long term cross flow filtration under subcritical flux. A two-stage TMP profile similar to that typically observed in MBR was obtained, confirming the important role of EPS during membrane fouling in MBR. In addition to adsorption, trace deposition of alginate also contributed to the initial slow TMP increase during the subcritical filtration. TMP increase during the long-term filtration was found not only due to the increase of the amount of deposition, but also the increase of specific cake resistance. A combined standard pore blocking and cake filtration model, using a critical pore size for the transition time determination, was developed and fit the experimental results well.

Identiferoai:union.ndltd.org:ADTP/212639
Date January 2005
CreatorsYe, Yun, School of Chemical Engineering & Industrial Chemistry, UNSW
PublisherAwarded by:University of New South Wales. School of Chemical Engineering and Industrial Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Yun Ye, http://unsworks.unsw.edu.au/copyright

Page generated in 0.002 seconds