Return to search

Matrix assisted laser desorption/ionization orthogonal acceleration time-of-flight mass spectrometry: development and characterization of a new instrument

The performance of a linear matrix assisted laser desorption/ionization mass spectrometer (MALDI-oa-TOFMS) was improved with more reproducible sample preparation methods, a higher rate digitiser for integrating signals and customisable computer control, data acquisition and analysis in the LabVIEW?programming environment. This resulted in a ~20% improvement in resolution (up to 4,400) and enabled measurement of desorption velocities of 1,000 - 1,800 ms-1 for analytes with m/z 615 ?1,350 Da, with matrix ion velocities being 4,000 ?4,800 ms?. Detector limitations and restrictions on source axis energy (and hence velocity) required for the analysis of ions prevented detection of other species with this instrument. A 20 kV reflecting geometry MALDI-oa-TOFMS was constructed to overcome these limitations and extend the mass range. This mass spectrometer was able to analyse ions desorbed with a wide range of energies (32 ?197 eV). The resolution was found to be 8,000 -10,000. Best mass accuracy was 15-80 ppm (internal standards ). External calibration gave larger mass errors, mostly due to timing jitter, but the mass axis was stable for &lt2 weeks. Mass accuracy was independent of the analyte and matrix used. Ions with m/z of ~10,000 - 20,000 Da were observable with the use of a pulsed lens in the target region. This lens increased signal approximately 20 times, but degraded resolution. The detection limit of the instrument (sample consumed) was estimated to vary from 10 ?90 fmol, by extrapolation, with more moles required at higher m/z. The microsphere plate (MSP) electron multiplier used in the reflecting instrument was found to have a temporal response of &gt1 ns FWHM, but with a low secondary electron conversion efficiency, making it unsuitable for high m/z species. Experiments were also performed with a novel rectangular mesh grid, which (in correct orientation) provided similar resolution to conventional square mesh grids, but with significantly improved transmission and hence sensitivity.

Identiferoai:union.ndltd.org:ADTP/215803
Date January 2002
CreatorsSelby, David Sean, School of Chemical Sciences, UNSW
PublisherAwarded by:University of New South Wales. School of Chemical Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright David Sean Selby, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0019 seconds