Return to search

Chemical evolution of galactic systems

This thesis explores the chemical signatures of galaxy formation and evolution using a software package designed specifically for this investigation. We describe the development of this multi-zone chemical evolution code, which simulates the spacetime evolution of stars, gas and a vast array of chemical elements within galactic systems. We use this tool to analyse observations of a wide range of astrophysical
systems.

The chemical evolution code is first calibrated using empirical constraints from the Milky Way. These simulations help shed light on the nature of the gas accretion processes that fueled the formation of our Galaxy. We demonstrate the importance of low- and intermediate-mass stars in explaining the elemental and isotopic abundance patterns measured in Galactic stars. An intriguing question in astrophysics is whether pollution from intermediate-mass stellar winds is responsible for anomalous abundances in globular cluster stars. We test this scenario by modelling the formation and chemical evolution of a globular cluster.

Recently, the most detailed abundance pattern ever measured beyond the local universe was obtained for a high-redshift quasar absorption cloud, providing an exciting opportunity to explore early conditions of galaxy formation. We compare the chemical abundances in this distant object with predictions from a series of models, in order to gain insight into the protogalaxy's age and star formation history. We continue investigating the high-redshift universe, turning our attention to the issue of space-time variations in the fine-structure constant, as suggested by quasar absorption-line constraints. An excess abundance of heavy Mg isotopes in
the absorbing clouds could partly account for the data, without needing to invoke variations in fundamental constants of nature. An enhanced early population of intermediate-mass stars could lead to such extreme Mg isotopic ratios, but we show that additional chemical consequences of this scenario conflict with observations.

Identiferoai:union.ndltd.org:ADTP/216501
Date January 2005
CreatorsFenner, Yeshe, yfenner@astro.swin.edu.au
PublisherSwinburne University of Technology. Centre for Astrophysics and Supercomputing
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.swin.edu.au/), Copyright Yeshe Fenner

Page generated in 0.0019 seconds