Return to search

Benthic Bulldozers and Pumps: Laboratory and Modelling Studies of Bioturbation and Bioirrigation

Aquatic sediments are the recipients of a continual rain of organic debris from the water column. The decomposition reactions within the sediment and the rates of material exchange between the sediment and water column are critically moderated by the transport processes within the sediment. The sediment and solute movement induced by burrowing animals – bioturbation and bioirrigation – far exceed abiotic transport processes such as sedimentation burial and molecular diffusion. Thalassinidean shrimp are particularly abundant burrowing animals. Living in high density populations along coastlines around the world, these shrimp build complex burrow networks which they actively maintain and irrigate.¶

I used a laser scanner to map thalassinidean shrimp (Trypaea australiensis) mound formation. These experiments measured rapid two-way exchange between the sediment and depth. Subduction from the sediment surface proved to be just as important as sediment expulsion from depth, yet this is not detected by conventional direct entrapment techniques. The experiments demonstrated that a daily sampling frequency was needed to capture the extent of the two-way exchange.¶

I derived a one-dimensional non-local model accounting for the excavation, infill and collapse (EIC) of burrows. Maximum likelihood analyses were used to test the model against 210Pb and 228Th profiles taken from sediment cores in Port Phillip Bay, Melbourne. The maximum likelihood approach proved to be a useful technique for quantifying parameter confidence bounds and allowing formal comparison with a comparable biodiffusion model. The EIC model generally outperformed the biodiffusion model, and in all cases best EIC model parameter estimates required some level of burrow infill with surface material. The EIC model was expanded to two and three dimensions, which allowed the representation of lateral heterogeneity resulting from the excavation, infill and collapse of burrow structures. A synthetic dataset generated by the two-dimensional model was used to demonstrate the effects of heterogeneity and core sampling on the mixing information that can be extracted from one-dimensional sediment core data.¶

Burrow irrigation brings oxygenated water into burrow depths, and can affect the nitrogen cycle by increasing the rates of coupled nitrification and denitrification reactions. I modelled the nitrogen chemistry in the annulus of sediment surrounding an irrigated burrow using a radially-symmetrical diffusion model. The model was applied to three published case studies involving thalassinidean shrimp experiments and to field data from Port Phillip Bay. The results highlighted divergences between current theoretical understanding and laboratory and field measurements. The model further demonstrated potential limitations of measurements of burrow characteristics and animal behaviour in narrow laboratory tanks. Activities of burrowing animals had been hypothesised to contribute to high denitrification rates within Port Phillip Bay. Modelling work in this thesis suggests that the model burrow density required to explain these high denitrification rates is not consistent with the sampled density of thalassinidean shrimp in the Bay, although dense burrows of other animals are likely to be important. Limitations of one-dimensional representations of nitrogen diagenesis were explored via comparisons between one-dimensional models and the full cylinder model.

Identiferoai:union.ndltd.org:ADTP/216815
Date January 2003
CreatorsGrigg, Nicola Jane, nicky.grigg@csiro.au
PublisherThe Australian National University. Centre for Resource and Environmental Studies
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.anu.edu.au/legal/copyrit.html), Copyright Nicola Jane Grigg

Page generated in 0.0015 seconds