Return to search

An assessment of condylar kinematics

Master of Science / Most studies of condylar movement are based on the movement of an arbitrary condylar point. As the condyle is a 3-dimensional body which undergoes complex rotations and translations in function, the movement of one point in the vicinity of the condyle may not accurately represent condylar movement. The aims of this investigation were to determine in human subjects, during open-close and excursive jaw movements, the movement patterns of arbitrary and anatomical condylar points; and whether the trajectory of a single selected point can accurately reflect the movement of the condyle. In 44 subjects, condylar point movements were recorded with an opto-electronic tracking system (JAWS3D), which recoded the position of three light-emitting diodes attached to each dental arch. The primary point, selected to represent movement of the condyle, was 15 mm medial to the palpated lateral condylar pole, parallel to the Frankfort horizontal plane. Additionally, four points were selected along orthogonal axes in the sagittal plane, and four in the horizontal plane: each was 5 mm from the primary point. In two subjects, the mandibular condyles were imaged by computerised tomography (CT) and the lateral and medial poles, most superior, anterior and posterior points of their condyles were selected. The trajectories of each point were compared for each subject for the mandibular movements listed above. Variability in both path form and dimension was noted between the subjects for all mandibular movements. For example, in an open-close mandibular movement the condylar point translation varied in the antero-posterior direction between 1.8-22.8 mm, and in the supero-inferior direction between 4.5-12.1 mm. For each subject, the pathway of each point was different in form and dimension from that subject’s other condylar points for the open-close, and ipsilateral lateral mandibular movements. For the open-close movement, in only four of the 44 subjects were the arbitrary point traces similar in form within a subject; and the tracings of each subject’s condylar points showed, on average, a 3.2 mm difference in maximal horizontal (i.e. antero-posterior) translation and 2.9 mm in maximal vertical (i.e. supereo-inferior) translation. For contralateral lateral mandibular movements, the path form and dimension in the sagittal plane of the condylar points were similar within a subject; however the lateral component showed variability in path length for the different points within a subject. The pathways of the condylar points for a protrusive movement displayed the most similarity within a subject, with an average of 0.4 mm variation in maximal horizontal or vertical displacement between each subject’s arbitrary condylar points’ tracings. The anatomical condylar points of the two subjects showed variability between and within each subject. For these two subjects the trajectories of the arbitrary condylar points moved in directions similar to the anatomical points of all movements except for the ipsilateral lateral mandibular movement, where in one subject, the arbitrary condylar points moved posteriorly, inferiorly and laterally whereas the anatomical points moved anteriorly, inferiorly and laterally. There is much variability in both form and dimension for mandibular condylar movement between human subjects. There is also considerable variability within subjects in the form and dimension of condylar point movement, whether arbitrary or anatomical, depending on the point selected. By inference therefore, a single condylar point cannot accurately reflect the movement of the mandibular condyle, except perhaps for a protrusive mandibular movement. Multiple mandibular points are therefore required to describe the motion of the condyle. In an ipsilateral lateral mandibular movement, for example, an arbitrary point may move in a completely different direction to the mandibular condyle, and so anatomically derived condylar points should be utilised to assess accurately condylar movement.

Identiferoai:union.ndltd.org:ADTP/225454
Date January 1995
CreatorsPeck, Christopher
PublisherUniversity of Sydney., Faculty of Dentistry
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsThe author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html

Page generated in 0.0021 seconds