Return to search

An electromyographic study of the human jaw-closing reflex

Master of Science / A mechanical stimulus producing stretch in human or animal muscle may evoke a reflex response in the muscle that tends to oppose the length change. In decerebrate preparations, limb flexion generates a tonic stretch reflex that manifests as a sustained increase in resistance (Liddell and Sherrington, 1924; Widmalm, 1976b). This tonic response is not readily apparent in the conscious human subject, however, the phasic response may be observed as a burst of action potentials produced by the synchronous firing of several motor units, and as such represents the classic tendon reflex. The analogous compound action potential in the jaw musculature may be demonstrated following a sudden downward mechanical impulse to the mandible in the human or animal subject (Goodwill, 1968; Matthews, 1976) and has been termed the jaw-closing reflex or the jaw jerk reflex, the latter so named in view of its similarity to the knee-jerk and other tendon reflexes induced by sudden stretch (Goodwill, 1968; Munro and Griffin, 1971; Tardieu, Tabary and Tardieu, 1973). The use of the term “jaw jerk” to describe this reflex may be inappropriate as it has been used to describe a sudden opening movement (Riblet and Mitchell, 1971). It would appear preferable therefore to avoid the term “jaw jerk” in in favour of less ambiguous terminology such as “jaw-closing” reflex or monosynaptic myotatic reflex potential (MSP; Widlam, 1976a and b). The jaw-closing reflex is considered a fundamental phenomenon of the facial and oropharyngeal areas (Dubner, Sessle and Stoery, 1978) as it utilises afferent and efferent components involved in the generation, learning and modulation of programmed jaw movement sequences. Thus the reflex would appear to form the basis of more complex functions such as mastication and swallowing (Sessle, 1981), although the response itself probably appears only infrequently in normal function. A downwards tap delivered to the chin in a relaxed human subject causes muscle stretch and this produces an afferent projection along group Ia and group II pathways (Figure:1) which in turn exert monsynaptic and polysynaptic influences on motoneurones in the trigeminal motor nucleus. Inter-segmental and suprasegmental projections onto alpha and fusimotoneurones located in this motor nucleus (Greenwood and Sessle, 1976; Sessle, 1977a and b) modulate ongoing motoneurone excitability thus influencing the mainifestation of evoked monosynaptic reflexes.

Identiferoai:union.ndltd.org:ADTP/225456
Date January 1983
CreatorsMurray, Gregory Michael
PublisherUniversity of Sydney., Faculty of Dentistry
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsThe author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html

Page generated in 0.002 seconds