Return to search

Extracellular signal regulated kinase/mitogen activated protein kinase (ERK/MAPK) regulation of the androgen receptor in breast cancer cells

[Truncated abstract] Androgens inhibit the growth of human breast tumours and have been successfully used to treat breast cancer in women. Expression of the androgen receptor (AR), which mediates androgen action, is upregulated in breast cancer cells and the AR is the most frequently expressed steroid hormone receptor in breast tumours. AR levels and activity are modulated by the activity of other signalling pathways, however interactions between the AR and signalling pathways and the consequent alterations to the androgen responsiveness of breast cancer cells are largely uncharacterised. The extracellular signal regulated kinase (ERK1/2) pathway is hyperactivated in ~30% of breast tumours and these tumours are often associated with low oestrogen receptor-a (ERa) levels, reduced responsiveness to antioestrogen therapies and an overall poorer prognosis. In this thesis, the MCF-7 human breast cancer cell line which expresses ERa, progesterone receptor (PR) and the AR, was used to investigate ERK1/2-mediated regulation of the AR and the androgen responsiveness of cells. Inhibition of ERK1/2 signalling was achieved by treatment of cells with U0126, an inhibitor of MEK1/2, the upstream activator of ERK1/2. Hyperactivation of ERK1/2 signalling was achieved by stably transfecting cells with a plasmid encoding a constitutively active form of the MEK1 protein (¿MEK1), resulting in the isolation of two clonal cell populations stably expressing ¿MEK1, ¿C3 and ¿6B, and a monoclonal cell line stably expressing the empty vector, MT3-1. Steady state AR mRNA levels, quantitated using real-time RT-PCR, were increased following U0126 treatment of MCF-7, MT3-1 and ¿6B cells. Conversely, treatment of cells with 10-8M 5a-dihydrotestosterone (DHT) for up to 72 hours decreased AR mRNA levels, indicating that ERK1/2 hyperactivation did not alter the androgenresponsiveness of AR mRNA. '...' Overall levels of AR phosphorylation were enhanced in ¿6B cells in the absence and presence of ligand, indicating that ERK1/2 hyperactivation either directly or indirectly induced receptor phosphorylation. The AR is localised in the cytoplasm in the absence of ligand and was more rapidly translocated to the nucleus in the presence of DHT in ¿C3 cells, an effect that was abrogated in the presence of U0126, thereby indicating an ERK1/2-specific mechanism. AR transcriptional activity, measured using androgen responsive reporter plasmids was not significantly altered in ¿6B cells in either the absence or presence of DHT, although the trend towards enhanced AR activity may be confirmed in future studies using optimised reporter assays. Consistent with the cell cycle regulatory functions of ERK1/2 signalling, proliferation of ¿C3 cells and ¿6B cells was increased in comparison to that of MT3-1 and MCF-7 cells. Treatment of ¿C3 cells and MCF-7 cells with 10-10 – 10-8M DHT produced similar inhibition of proliferation (~40%) during 8 days of culture, with no evidence of cytotoxicity. The results obtained in this thesis demonstrate that while ERK1/2 signalling regulates AR phosphorylation, processing and intracellular localisation, ERK1/2 hyperactivation in breast cancer cells does not inhibit the anti-proliferative effects of androgens. These findings support the development of tissue-specific androgenic treatments for breast tumours including poor prognosis tumours exhibiting ERK1/2 hyperactivation.

Identiferoai:union.ndltd.org:ADTP/225654
Date January 2008
CreatorsAzzam, Diana Galil
PublisherUniversity of Western Australia. School of Pathology and Laboratory Medicine
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Diana Galil Azzam, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0021 seconds