Return to search

Numerical simulation of fracture in unreinforced masonry

The aims of this thesis are to study the fracture behaviour in unreinforced masonry, to carry out a limited experimental program on three-point bending (TPB) masonry panels and to develop a time-dependent fracture formulation for the study of mode I fracture in quasi-brittle materials. A micro-model for fracture in unreinforced masonry is developed using the concept of the discrete crack approach. All basic masonry failure modes are taken into account. To capture brick diagonal tensile cracking and masonry crushing, a linear compression cap is proposed with a criterion for defining the compression cap. The failure surface for brick and brick-mortar interfaces are modelled using a Mohr-Coulomb failure surface with a tension cut-off and a linear compression cap. The fracture formulation, in nonholonomic rate form within a quasi-prescribed displacement approach, is based on a piecewise-linear constitutive law and is in the form of a so-called ?linear complementarity problem? (LCP). The proposed model has been applied to simulating fracture in masonry shear walls and masonry TPB panels. An experimental program was undertaken to investigate the failure behaviour of masonry panels under TPB with relatively low strength mortar. The basic material parameters were obtained from compression, TPB and shear tests on bricks, mortar and brick-mortar interfaces. The experimental results showed that the failure of masonry TPB panels is governed by both tensile and shear failure rather than just tensile failure. The simulation of the masonry TPB tests compared well with the experimental results. In addition, the LCP fracture formulation is enhanced to study the time-dependent mode I fracture in quasi-brittle materials. Two main time-dependent sources, the viscoelasticity of the bulk material and the crack rate dependent opening, are taken into account. A simplified crack rate model is proposed to include the rate-dependent crack opening. The model is applied to predicting time-dependent crack growth in plain concrete beams under sustained loading. The model captures the essential features including the observed strength increase with loading rate, the load-deflection and load-CMOD responses, the deflection-time and CMOD-time curves, the predicted time to failure and the stress distributions in the fracture zone.

Identiferoai:union.ndltd.org:ADTP/233163
Date January 2007
CreatorsChaimoon, Krit, Civil & Environmental Engineering, Faculty of Engineering, UNSW
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0018 seconds