Return to search

The Electromagnetic Field as a Modulator of a Protein Activity, and the Resonant Recognition Model

In this study, it was experimentally proved, for the first time, that it is possible to predict the frequency of electromagnetic radiation that can modulate activity of proteins and more specifically activity of enzymes. The prediction was obtained using the computational model so called the Resonant Recognition Model (RRM). The model was tested here experimentally using the reaction catalysed with the enzyme l-lactate dehydrogenase (LDH). The RRM model was applied to the group of the enzymes belonging to the sub-subclass EC 1.1.1.27 i.e. l-lactate dehydrogenase. The wavelengths of the electro magnetic radiation calculated by the RRM and proposed to alternate activity of l-lactate dehydrogenate were identified at =620 25 nm and =840 25 nm. Enzyme activity was then measured after the exposure to the low-intensity, electromagnetic radiation (EMR) within the proposed EMR range [560-860 nm]. The experimental results have indeed shown that there is a significant increase in the activity of LDH only after irradiation within the range of the frequencies predicted by the RRM: 596nm (12%; P less than 0.001) and 829 nm (11.8%, P less than 0.001). These results prove successfully that activity of proteins and more specifically enzymes could be modified by EMR radiation of specific frequencies and even more that RRM computational model can successfully predict these frequencies.

Identiferoai:union.ndltd.org:ADTP/235181
Date January 2007
CreatorsVojisavljevic, Vuk, Vuk.Vojisavljevic@rmit.edu.au
PublisherRMIT University. Electrical and Computer Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Vuk Vojisavljevic

Page generated in 0.0022 seconds