Return to search

Small animal models of Gal-mediated and xenograft rejection

Xenotransplantation is the final frontier of using vascularised organs or cellular grafts to treat end-organ disease and offers a potential solution to the worldwide shortage of human tissue available for transplantation. The main immunological barrier to xenografting from pig-to-primate is the antigen, Galactose-α1,3-Galactose (Gal) which is found in all species except humans and other higher primates. Even with the major advancement of deleting Gal from the potential pig donor species with the aid of cloning technology, complete elimination may be elusive as alternative genes yet to be fully characterised, may still produce Gal at low levels. Thus, the human immune response against Gal may continue to be a barrier to successful xenotransplantation. The aim of this project was to develop small animal models of the important components of xenograft rejection that largely relate to the anti-Gal immune response. These include models of hyperacute, acute vascular and chronic xenograft-like rejection that in turn, provide new insights in the immune mechanisms of the rejection processes. The role of antibody and both innate and cognate cellular immunity are explored. Both vascularised heart grafts and non-vascularised skin graft models are examined as rejection of solid organs may differ from cellular transplantation. The project also provides a platform for future studies in testing genetic and pharmacotherapeutic strategies to overcome the rejection processes uncovered.

Identiferoai:union.ndltd.org:ADTP/245020
CreatorsGock, Hilton
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsTerms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Restricted Access: University of Melbourne Staff and Students Only, Login required please enter your University of Melbourne email username and password in the login boxes at the top righthand of this repository page to access this item.

Page generated in 0.0019 seconds