Return to search

The fate of cyanide in groundwater at gasworks sites in south-eastern Australia

The fate and transport of cyanide in groundwater was investigated at gasworks sites in southeastern Australia. Two gasworks sites were investigated during this research: one in Tasmania and the other in Adelaide. The research followed three principal methods of investigation: field work, laboratory work and numerical modelling. The field work was aimed at observing the behaviour of cyanide in highly contaminated groundwater environments. Measured field parameters and laboratory analytical results from groundwater sampling were used to describe the hydrodynamics and hydrochemistry of the groundwater environment, providing a framework for groundwater flow and solute transport modelling. Groundwater and soil samples were also collected for use in laboratory experiments. The results from both field sites indicate contrasting hydrogeological environments, however, inorganic (metallic and non-metallic) and organic contaminants were measured in solution at both sites. The maximum concentrations observed at both sites were up to 5,300 mg/L CN(Total) (Adelaide site) and 21 mg/L CN(Total) (Tasmanian site). Results from geochemical modelling of solutes in groundwater at the field sites indicate that cyanide was predominantly in its free form in solution, with metallo- and alkali-cyanides also present.

Identiferoai:union.ndltd.org:ADTP/245385
CreatorsMeehan, Samantha
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsTerms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access

Page generated in 0.0023 seconds